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NUMERICAL COMPLEX ANALYSIS METHOD FOR
PARAMETERS IDENTIFICATION OF ANISOTROPIC MEDIA
USING APPLIED QUASIPOTENTIAL TOMOGRAPHIC DATA.

PART 2: ALGORITHM AND NUMERICAL EXPERIMENT

An algorithm, which lies in the sequential iterative applying of
numerical quasiconformal mapping methods for constructing a series
of dynamic meshes using different boundary conditions (that deter-
mined by experimental data) and solving the problem of parameter
identification for each of these meshes is developed. It is based on
the proposed approach to the solving of gradient problems of param-
eters identification of quasiideal fields with using applied quasipoten-
tial tomographic data in cases of anisotropic media and applying the
ideas of the block iteration method. The reconstructed image of the
distribution of conductivity tensor inside the investigated object, ob-
tained as a result of numerical calculations performed on the basis of
the developed algorithm with a sufficient accuracy corresponds to the
etalon. The method is characterized by comparatively fast computer
convergence (since, unlike many used methods, it does not require
finding derivatives of the conductivity tensor distribution function at
certain points and refining the boundary nodes at each iteration step).
Its significant feature is the possibility of comparatively easy its par-
alleling and stopping the calculation procedure when some condi-
tions for finishing the process are complete with simultaneous auto-
matic determination the areas of the physical domain where have
place large errors of the calculations, which makes it possible to use
the machine time more economically. The algorithm for image re-
construction could be extended not only for the medium with a
known sum of eigenvalues of the conductivity tensor, but also to cas-
es of other rather wide dependencies between them. In particular, this
approach provides an opportunity to represent it as some complex
function as required by biomedical practice.

Key words: applied Quasipotential Tomography, Quasicon-
formal Mappings, Anisotropy, Identification, Nonlinear Problems.

Introduction. In the paper [1], the approach to the solving of gradi-
ent problems of parameters identification of quasiideal fields with using
applied quasipotential tomographic data based on numerical complex
analysis methods is transferred to cases of anisotropic media. In this, the
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additional information about the nature of the conductivity distribution
inside the domain (research object) is considered a priori known. Howev-
er, in opposite to the traditional approaches to the statement and solving
the problems of electrical impedance tomography, here set the local veloc-
ities distribution of a substance (liquid, current) in addition to the averaged
potential at the contact sections of plate and body and at other sections
(stream lines) here set the potential distribution (according to experimental
data). Generation of initial data at the boundary of the investigated object
is carried out in accordance with the polar model of current injection when
eigenvalues sum of the conductivity tensor (CT) of the media is given. The
corresponding problem is reduced to the iterative solving of a series of
problems for Laplace type equations, where instead of «boundary numeri-
cal analogues of the Cauchy—Riemann type equations» appear the ratio of
quasiorthogonality with using special types of optimization conditions.
This work is devoted to the construction of an appropriate algorithm and
conducting computer experiments.

The algorithm. Algorithm for solving the input problem lies in rota-
tional parametrization of internal nodes of the mesh domains G!{®, CT
and using an ideas of block iteration method [5, 6]. In particular: we set
the number of injections p, bound of domains G!P (by the functions
x=%(z), y=79()), parameters z{”, z{”, P, P and &, &, (of
accuracy), q (g >1 is responsible for the number of iterations for correct
of internal nodes having specific CT), quasipotentials ¢{”, " P and
discharges Q(", parameters m(P  n‘P of G(P) partition (it is desirable

Q(P) m® 11
9 P _ oM (P 4q
the accuracy of the calculations) [3, 5], constants of functional (18) [1]
and 7, distribution of the eigenvalues sum A = A(x,y) and parameters
a, (@<k<4) for inequalities-restrictions (19) [1]. Along with this we

to select this values so that ~1 in order to improve

calculate the coordinates of the angular points A :(1(15\9)),9(1;”))),
B, = (X, 9), Cp =(XE).9G), €, = (%), 9:P)),
Dp :(X(TI(DD)), V(TE)D))) on 6G§p), A(D(P) _ ((D*(P) _goip))/(m(P) +1),

Ay =Q® /(n™ +1) and values of quasiconformal invariants
FONYWOFINAOS
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Then we set the values of local velocities ¥{”, (" (and therefore,
stream functions ", ™) and potentials 7P, ¢* having some

arguments 7 = 7P, 2](P, 7", o(P (results of physical measurements),

respectively, after which we calculate (10) [1] using interpolation and fi-

nally we find the coordinates of x{?, y§%, (B, vy, x,
v L x;?3)+lj, yfn'?,?)m A<p<p 0<ism®P 41 0<j<n® 1y

on aG!" . Then we form the initial approximations of the nodes x(*®,

i,
c(o) which define CT.

—r,r.’
After that we start the iterative process of reconstruction, which consists of
the following steps: we apply the difference representation of Laplace type
equations (14) [1] (with consider «injectivity») for search the coordinates

of internal nodes when 1< p< p, 1<i<m®, 1< j<n® g times; we
solve the functional minimizing problem (18) [1] under conditions (19) [1]

relative al” . b . ¢’ (here 1=0,1.. is the iterative step

r,=0k,, k,=1s,, 1, =0k, k =05

19¢

0 0
yi5? and list of parameters a{” ., b®

[ A A

number, k, =15,

+Sas Kas
r, =0, 0,k, .); check the conditions for the completion of the iterative pro-

cess, among which may be [5]: stabilizing of near-boundary nodes, CT,
the quasiconformal degree parameter, the values of discharges, etc.

A<p<p, 1<i<m® 1< j<n®) In the cases when one of these

conditions is not satisfied the iterative process begins again, otherwise we
build the corresponding reconstructed image and, if it’s necessary, the
electrodynamical mesh, the complex quasipotential domains or calculate
the velocity fields etc.

Note that the algorithm will be identical if instead of eigenvalues
sum (4) [1], it is known the distribution either 4 or A,. In first case the

term (AP - lyjfp) 7“’)) of functional (18) [1] is replaced by

]

2
[/17([)) 05( ) ogP) s \/(Gup) DY + 4P )j in  the

second it is  replaced by ,&(/127(')) 05( olP + ol P -

2
—\/(afl(p) 7“”) + 4] (P2 )] . However, the solving of the nonlinear
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programming problem thus created will require the using of the global
optimization method.

In order to use the machine time more frugally, it is also possible to
apply formulas (18) [1] and (19) [1] only for selected points. In particular
(if it allows the chosen optimization algorithm) the fulfillment of condi-
tions (19) [1] should not be required in all nodes of the p meshes, but

only in the coordinates of the extreme values of the functions (4) [1] in-
stead. It makes sense to set a series of control points inside the investigated
domain in other cases. Such in some cases may be nodes of meshes from
arbitrary injection.

Also note, that instead of the procedure for determining the coordi-
nates of the boundary nodes using formula (16) [1] (by interpolating the
results of physical measurements), we can immediately select them so that
the local differences in the values of the function of flow or potential be-
tween them at the corresponding neighboring points to be constant within
the injection.

Numerical calculations. We represent the results of numerical cal-
culations for the following input data: s, =2, s, =s. =3, p =20, X(r) =

=150cos7, §(r)=100sinz, a, , =b . =¢ ., =0 (K, =Ls,,

fh=0Kky k=155, 1, =0ky k=05, r,=0k), 80 =boo =1,
n=0.1, n =0.01, oy =a, =0.01, o =a, =4, q = 200,
e =6=107 mP =100 @P=0 pP=1 P =9z/8+
+(p-Dx /P, Tép) = T'(Ap) - l4, T((:p) = T(Ap) -, z'[gp) = r((:p) —rl4,
QP ¢ ™ 5™, a<p<p), Ax,y). Visual representa-
=i
tion of the received CT distribution is carried out using a specially devel-
oped procedure similar to [4]. According to this, the investigated domain
is divided into square sections by lines parallel to the axes of coordinates.
The CT is characterized in the center of each of them as an ellipse (its di-
rections of axes and radiuses are corresponds to the directions of eigenvec-
tors and proportional to the eigenvalues, respectively) by the formula

Ky X2+ Ky Y+ 26, XY =1, where Ky, =sin? 0/ A% +cos’ 0127,
Ky =082 0122 +sin® 0127, Ky, = (4% —A,2)singcosd, the angle ¢ of
rotation of the ellipse must satisfy the conditions 2o, = (4, —4,)sin26,

oy, = (4, — A,)c0s°0 + 4,. Figura, b presents the reconstructed image of
the CT distribution in comparison to the given theoretically (Figura, a).
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Figura. CT distribution: exact (when A(x,y)=1.9-5 107" x+0.01y +

+107" (—145x” +600xy +850y” +2x> —0.3x*y — 4.5xy° —=5y°)) (a),
approximated solution (b)

Conclusions. The algorithm for solving the problem of image recon-
struction of the CT of anisotropic media given in [1] is developed. It is charac-
terized by comparatively fast computer convergence (since, unlike many used
methods, it does not require finding derivatives of the CT distribution function
at certain points and refining the boundary nodes at each iteration step).

The significant feature of developed algorithm is the possibility of detec-
tion of so-named «stagnant zones» and «zones of large gradients», which ap-
pears near the especial points of non-smooth boundary lines and critical points
inside the respective domains. We also note that the considerably new in algo-
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rithm is considering the conditions of «anisotropic quasiorthogonality» along
the boundary equipotentials and current lines (instead of orthogonality in cases
of isotropic media), which requires additional substantially new constructions.
Also, the anisotropy tensor affects the decrease in accuracy by orders of mag-
nitude and stability, which in particular requires the creation of new structures-
procedures for Tikhonov-type regularization.

We plan to extend the proposed algorithm to the following cases:
when have place other rather wide dependencies between eigenvalues of
the CT, spatial resolution, applying the quasipotential of the initial stream
to several sections.
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YMCNOBUNA METO[ KOMIMJIEKCHOIO AHANI3Y
IDEHTU®DIKALIT MAPAMETPIB AHI3OTPOMHUX
CEPEQOBMLL 3A JAHUMU TOMOTPA®IT MPUKINAOEHUX
KBA3IMOTEHLIANIB. YACTUHA 2: ANNTOPUTM
TA KOMM’FOTEPHUW EKCNEPUMEHT

Ha ocHOBI 3arponoHOBaHOTO MiAXOY IO PO3B’sI3aHHS I'PAIiCHTHUX 3384
ineHTHdIKALi TapaMeTpiB KBa3iiIealbHUX MOJMIB 33 JaHUMH ToMorpadil mpu-
KJIQJICHUX KBa3ilOTEHIaliB y BHUIIAJKaX aHI30TPOIHUX CEPElOBHIL Ta ilesx
MeToay OJI04HOI iTepallii, po3po0IeHO ArOPHTM, SIKHil HOJIArae y MOCIiIOB-
HOMY iTepaliffHOMy 3aCTOCYBaHHI YHCIOBUX METO/IB KBa3iKOH(QOPMHHX BiZ0-
OpakeHb 11 TOOYIOBH cepii AMHAMIYHHX CITOK IPH Pi3HMX 3aJaHHAX Kpano-
BUX YMOB (II0 BU3HAYAIOThCS €KCIEPUMEHTAIBHUMH JaHUMH) Ta PO3B’s3aHHI
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3a/ia4i napaMeTpUYHoi ieHTUdIKALIT /U KOXKHOI 3 IMX CIiTOK. PeKoHCcTpyiio-
BaHe 300pa)KeHHsI PO3MOALTY TEH30pa IPOBIHOCTI Y BHYTPIIIHOCTI JOCIIIKY-
BAaHOTO 00’€KTa, OTPUMAHE B PE3YJbTaTi YMCIOBUX PO3PAXyHKIB, POBEACHHUX
Ha OCHOBI pO3pO0OJIEHOr0 ATOPUTMY, 3 JOCTaTHROIO TOUHICTIO BiIOBiTa€ eTa-
JIOHHOMY. MeTosl XapaKTepH3yeThCsl TMOPIBHAHO IIBHUIKOK KOMIT FOTEPHOO
30DKHICTIO (OCKLIBKH, Ha BiIMIHY BiJ 0araTb0X BHKOPHCTOBYBaHHX METOIB,
He NoTpeOye 3HAXOMKEHHS MOXITHUX (QYHKIIT pO3MOALTY TeH30pa IMPOBIIHOCTI
Y BU3HAYCHHUX TOYKaX Ta YTOUYHEHHs TPAHUYHUX BY3JIiB Ha KO)KHOMY iTeparliii-
HOMy Kpotii). CyTTEBOIO HOTo OCOOJIUBICTIO € MOYKITMBICTh MOPIBHSIHO JICTKOTO
HOro posmapaieieHHs Ta 3yIUHKH HPOLEIypH OOYKCICHHS 32 YMOBH BHKO-
HaHHS JIMLIE ASSKHX 13 YMOB 3aKiHYEHHS IIPOLIECY 3 ABTOMATHYHUM BHU3HAYCH-
HSIM THX IUITHOK (hi3udHOi 00MacTi, 16 MaroTh MiCIe BEUKi MOXUOKH 004nC-
JIeHB, 110 JJA€ 3MOTY CKOHOMHIIIIC BHKOPHCTOBYBATH MAIlIMHHUN Yac. Po3po6-
JICHUH alrOpPUTM PEKOHCTPYKIIii 300paskeHHsI MOXe OYTH IMOIIMPEHUI HE TiTb-
KU Ha CepeIOBHIIA 3 BIIOMOIO CYMOIO BJIACHHX 3HAaY€Hb TEH30pa IPOBITHOCTI,
aJie i1 Ha BUIA/IKK JOCHUTD MIMPOKHX IHIINX 3aJI©)KHOCTEH MDK HUMH. 30KpeMa
miaxig 3abe3nedye MOXKIIMBICTH TPENCTABICHHS HOTo JESKOK KOMIUIEKCHO
3HAYHOIO (DYHKII€IO SIK 116 BUMarae 6ioMeIMYHa IpaKTHKa.

KarouoBi cioBa: momocpagis npuknadenux Keazinomenyianie, Keasi-
KOHGHOPMHI 8i000padicenHs, aHizomponisi, iI0eHmu@iKayis, HeliHiuHi 3a0ayi.
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HAWKPALLE PIBHOMIPHE HABNWXEHHA QI'IHAI?IHAM__VI
3 BUKOPUCTAHHAM OU®EPEHLUIAIBHOI EBOJIOLII

PosrnsgnyTo 3amady HaHKpamoro piBHOMIPHOTO HaOMMKEHHS
(yHKIIH MOTIHOMIaNBPHUMH CIUIAHAMH 3 (DIKCOBAaHUMHU BY3JIaMH.
Jnst 1i po3B’si3aHHS 3aIPONIOHOBAHO MiJIXiX HA OCHOBI €BONIOMIHHUX
ANTOPUTMIB — IOTY)KHOTO KJIACY CTOXaCTUYHHUX IOLIYKOBHX METO-
niB orrtuMi3zarii. s 3HAXOMKEHHS CIDIaiiHa HAMKpamoro piBHOMi-
pHOTO HAOJIDKEHHS aJalTOBaHO AJITOPHTM JH(epeHLianbHOl eBo-
mromii. Lle oanH i3 KpamuX eBOMIOLIHHUX aITOPUTMIB, KU CTadi-
JIBHO 3HAXOAUTH TIIOOATBHUN ONTHMYM LiT0BOT (DYHKIIT (KpHTEpito
ornTuMizaniil) 3a MiHIMaIbHUI Yac. EBostoniiiHuii nporec B ajaropu-
TMi TTOYMHAETHCS 3 TEHEpallii HOMyJIAii BUMAJAKOBUX BEKTOPIB, KO-
OPIMHATH SIKUX MPECTABISIOTH COO0I0 MOXKIIMBI 3HAUCHHS Koe]irti-
€HTIB cIutaiiHa. J{ami BEKTOpH MOCTIMHO MOAU(IKYIOTHCS 32 TOMOMO-
rol0 orepauiif MyTamii, CXpellyBaHHs Ta CEleKIii 3 METOI 3MEH-
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