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DECOMPOSITION ALGORITHM FOR OPTIMIZATION
PLACEMENT PROBLEMS

The paper considers a placement problem of 2D convex objects in
a rectangular domain of minimum area, that related to the field of
Packing and Cutting problems. Our objects may be continuously trans-
lated and rotated. A nonlinear programming model of the problem is
derived using the phi-function technique. We develop an efficient de-
composition algorithm to search for local optimal solutions for the
placement problem. The algorithm reduces our problem to a sequence
of nonlinear programming subproblems of considerably smaller di-
mension and a smaller number of nonlinear inequalities. The benefit of
this approach is borne out by the computational results.
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Introduction. Optimal placement problem is a part of operational re-
search and computational geometry. It is also known as Packing and Cutting
problem [1, p. 1109-1130, 2, p. 397-415]. It has multiple applications in mod-
ern biology, mineralogy, medicine, materials science, nanotechnology, robot-
ics, coding, pattern recognition systems, control systems, space apparatus con-
trol systems, as well as in the chemical industry, power engineering, mechani-
cal engineering, shipbuilding, aircraft construction, civil engineering, etc. The
problems are NP-hard [3, p. 139-183] and, as a result, solution methodologies
generally employ heuristics. Some researchers develop approaches based on
mathematical modeling and general optimization procedures.

Our approach is based on mathematical modeling of relations be-
tween geometric objects, using the phi-function technique (see e.g. [4,
p. 539-544, 5, p. 283-294]) and thus reducing the Packing and Cutting
problem to a nonlinear programming problem. It contains all globally op-
timal solutions. It is possible, at least in theory, to use a global solver for
the nonlinear programming problem and obtain a solution, which is an
optimal packing. However in practice, the model contains a large number
of variables and a huge number of inequalities. Specifically, the model
involves O(n?) nonlinear inequalities and O(n?) variables due to additional
variables in quasi-phi-functions, where n is the number of convex objects.
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As a result, even finding a locally optimal solution becomes an unrealistic
task for the available state of the art NLP-solvers. In order to search for a
«good» locally optimal object placement within a reasonable computation-
al time we propose here a decomposition algorithm.

Problem formulation. We consider here a placement problem in the
following setting. Let Q denote a rectangular domain of length | and
width w. Both of these dimensions may be variable, or one may be fixed
and the other variable. Suppose a set of convex objects E;,
ie{l2,.,n}=1,, is given to be placed in Q without overlaps. The posi-
tion of object E; in the fixed coordinates is specified by the coordinates
(x;,y;) of its center and the rotation angle 8, . We call (x;,y;,6,) the vec-
tor of placement parameters of E;. Minimum allowable distances between
objects E; and E;, j>iel,,aswell as, between each object E;, iel,
and the frontier (border) of Q may be given.

Object placement optimization problem. Place the set of objects E;,
iel,, within a domain Q={(x,y)eR*:0<x<1,0<y<w} of mini-
mum area taking into account distance constraints. If one of the two di-
mensions (1 or w) is fixed, we need to minimize the other one. If both are
variable, it is natural to minimize the area F =1-w of the container.

Mathematical model. The vector u e R° of all our variables can be
described as follows: u=(l,w,u;,u,,....u,,7), u; =(x,y;,6) is the vec-
tor of placement parameters for the object E;, iel,, r denotes the vec-

n?

tor of additional variables, that includes two auxiliary variables (rilj,ri?
for each quasi phi-functions of objects E; and E;, R” denotes the o-di-

mensional Euclidean space, where o =2n +n+2.
A mathematical model of the object placement optimization problem
may now be stated in the form:
min F(u), (1)

ueW <R’

W ={ueR :®; >0,d;20,i=12..,n,j=12..,nj>i}, (2)

where F(u)=1-w, <13;j is an adjusted quasi phi-function [5, p. 283-294]

defined for the pair of objects E; and E;, @, is an adjusted phi-function [4,

i
p. 539-544] defined for the object E; and the object Q" (to hold the con-
tainment constraint), taking into account minimum allowable distance p .
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Our constrained optimization problem (1), (2) is a continuous nonlin-
ear programming problem. The frontier of W is usually made of nonlinear
surfaces containing valleys, ravines. A matrix of the inequality system
which specifies W is strongly sparse and has a block structure.

Problem (1), (2) is an exact formulation for the object placement op-
timization problem. Our objective function is a quadratic; each quasi-phi-
function inequality in (2) is described by a system of inequalities with dif-
ferentiable functions.

A solution strategy. Our solution strategy consists of three major stages.
First we generate a number of starting points from the feasible set of the prob-
lem (1), (2). Then starting from each point obtained at Stage 1 we search for a
local minimum of the objective function F(u) of problem (1), (2). Lastly, we
choose the best local minimum from those found at Stage 2. This is our best
approximation to the global solution of the problem (1), (2).

An essential part of our local optimization scheme (Stage 2) is the de-
composition algorithm that reduces the dimension of the problem and compu-
tational time. It is due to this reduction that our strategy can process large sets
of non-identical convex objects (100 and more). The reduction scheme used
by our algorithm is described below. The actual search for a local minimum is
performed by IPOPT [6, p. 25-57], which is available at an open access non-
commercial software depository (https://projects.coin-or.org/Ipopt).

Description of the Decomposition Algorithm. Let u®® ew be one
of the starting points found by the previous method. The main idea of the
algorithm is as follows.

First we circumscribe a circle C; of radius a; around each object E;,

i=12,..,n. Then for each circle C; we construct an «individual» rectangu-
lar container Q;, >C; o E; with equal half-sides of length & +¢,
i=12,.,n,sothat C;, E; and Q, have the same center (x”,y;) subject to
the sides of Q; being parallel to those of Q , a; is a diameter of E;. We take

n
the fixed value of & of the procedure as & = Z a; / n . Further we fix the po-
i=1
sition of each individual container Q; and let the local optimization algorithm
move the corresponding object E; only within the container Q. It is clear

that if two individual containers ©; and Q; do not have common interior

points for p =0, i.e. @™ >0, (or dis(Q;,Q;)>p for p>0, ie.

@™ >0), then we do not need to check the non-overlapping (or distance)

constraint for the corresponding pair of objects E; and E; .
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The above key idea allows us to extract subsets of our feasible set W of
the problem (1), (2) at each step of our optimization algorithm as follows.
We create an inequality system of additional constraints on the trans-

lation vector v, of each object E, in the form: @ >0, iel,, where
D% = min{—x + X0+ &,y + Y+, % =X +&,y, - y° + £}, is the phi-
function for the circle C, and object Qj; = R* \intQ;; .

The inequality ®““ >0 is equivalent to the system of four linear ine-
qualities —x; + X" +£>0, -y, +y  +£20, X, —x' +£>0, y, -y  +£>0.
Then we form a new subregion defined by

W, ={u e R%% :®y 20,(i, ) € 5, ®; >0,05% >0,ic 1},

where 2, ={(i, j) : @™ <0,i> j=1,2,...n}.

In other words, we delete from the system, which describes feasible
region W , quasi phi-function inequalities for all pairs of objects whose
individual containers do not overlap and we add additional inequalities
®%% >0, which describe the containment of the circles C; in their indi-
vidual containers Q,;, i =1,2,...,n. Eo ipso we reduce the number of addi-
tional variables by o, . Then our algorithm searches for a point of local
minimum u,, of the subproblem

min  F(u, ).
UWIEWICR”’rri '

When the point u:V is found, it is used to construct a starting point

1

u® for the second iteration of our optimization procedure.

At that iteration we again identify all the pairs of objects with non-
overlapping individual containers, form the corresponding subregion W,
(analogously to W, ) and let our algorithm search for a local minimum
ujVQ e W, . The resulting local minimum uV*VQ is used to construct a starting
point u®® for the third iteration, etc.

Then we solve the k-th subproblem with starting point u®*™ on a
subregion W, :

min _ F(u, ), 3)

ook
Uy, eW,cR
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W, ={u e R7 :d; >0,(i, j) e 5y, ®; 20,0°% >0,ic 1.},  (4)

where =, ={(i, j): @™ <0,i > j=12,....n}.
If the point u:v of local minimum of the k-th subproblem belongs to

the frontier of an «artificial» subset

(k-1)

I ={ueR7 % i—x +x¥ D 1e>0,-y, +y*V4e>0,

X

(i.e u e frig), we take the point u' =u® as a center point for a

k k

—xi(k’l) +£20, y;— yi(k’l) +&20, i=1..n},

new subset ITy,, and continue our optimization procedure, otherwise (i. e.

u eint r[“; ) we stop our iterative procedure.
'

k

We note that dist(u:v LU Y=g, ifu” e fri1¥, and the value of

k k+1 W

¢ is considerably greater than the accuracy of IPOPT (107®). Thus, we
may conclude that the stopping condition of the decomposition algorithm
is always reached in a finite number of iterations.

We claim that the point u” =u®" = (u;, »7) € R7 is a point of local

k

minimum of the problem (1), (2), where u:V e R77% is the last point of our

k

iterative procedure and z, is a vector of redefined values of the previously

deleted additional variables 7,  R°¢. The assertion comes from the fact that
any arrangement of each pair of objects E; and E; subject to (i, j) e E\E,
guarantees that there always exists a vector 7, of additional variables such

that ®@;>0,(i,j)e=\E, at the point u®". Here =={G,j),
i>j=12,..,n}. Therefore the values of additional variables of the vector

7, have no effect on the value of our objective function, i.e
F(u,, ) =F (") . That is why, indeed, we do not need to redefine the delet-
ed additional variables of the vector 7, at the last step of our algorithm.

So, while there are O(n?) pairs of objects in the container, our algo-
rithm may in most cases only actively controls O(n) pairs of objects (this
depends on the sizes of objects and the value of &), because for each ob-
ject only its « ¢ -neighbors» have to be monitored.
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The parameter ¢ provides a balance between the number of inequali-
ties in each nonlinear programming subproblem and the number of the
subproblems which we need to generate and solve in order to get a local
optimal solution of problem (1), (2).

Concluding remarks. The proposed decomposition algorithm allows

us to reduce the problem (1), (2) with O(n?) inequalities and a O(n?)-
dimensional feasible set W to a sequence of subproblems (3), (4), each
with O(n') inequalities and a O(n )-dimensional solution subset W, . This

reduction is of a paramount importance, since we deal with nonlinear op-
timization problems. We are going to apply our algorithm to optimization
placement problems for composed 2D and 3D objects in the near future.
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AIIFTOPUTM LIEKQMI'IO3I/ILI,I'I' AnA PO3B’A3AHHA
ONTUMIBALIMHUX 3A0AY PO3MILLEHHA

VY crarTi po3mIsAacThCs 3aada PO3MILIEHHS JABOBHMIPHHX OIMYKJIHX
00'eXTiB y IPSAMOKYTHiil 00J1acTi MiHIMAJIBHOT IUIOMII, SIKA BITHOCHTHCS 1O
KJIacy 3a/1ad YIaKoBKH i po3kporo. O6'eKTH, IO PO3MIIIYIOTHCS, MOXKYTh
HETIepepBHO TPAHCIIOBATHCS 1 oOepraTucs. BynyeTbest MaTemMaTHuHa Mo-
JIeNb 3aa4i pO3MIMIeHHs Y BUIVIAAL 33/1a4i HETIHIHHOTO MPOTrpaMyBaHHS 3
BUKOpPHUCTAaHHAM MeTony phi-dyHKmii. [1is MOImyKy JIOKaaTbHO-ONTUMANb-
HHX PO3B’S3KIB MPONOHYETHCS e(EKTUBHUH alTOPUTM IEKOMIO3MLIT, IKHi
3BOAMTH BHXiJHY 3aJady IO IMOCTITOBHOCTI Mif3amad HETiHIHHOTO Mpo-
rpaMyBaHHS 3HAYHO MEHIIIOI0 PO3MIPHOCTI 3 MEHIIMM YHCIIOM HENiHIHHIX
HepiBHOCTeH. [lepeBara IbOro MiAXOMYy MiATBEPIDKYETHCS pPe3yJbTaTaMu
YUCIICHHUX eKCIEPUMEHTIB.

KirouoBi cioBa: 3adaua posmiwenns, mamemamuyna mooens, Heili-
HIlIHA ONMUMI3AYIs, ANOPUTIM OeKOMNO3UYI].
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