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The article deals with the quadrature method for the numerical im-
plementation of polynomial integral operators. With the computer im-
plementation of Volterra-type integral models, the typical problem is
the accumulation of calculations at each step of the computational pro-
cess. For its acceleration it is suggested to apply the vector-matrix ap-
proach. The suggested approach is based on quadrature methods: rec-
tangles, trapezoids, and Simpson's. For homogeneous polynomial inte-
gral Volterra operators of the first-, second- and third-degree, respec-
tively, the objects in the form of vectors, matrices, and three-
dimensional structures containing the coefficients of the corresponding
quadrature formulas have been constructed. The suggested vector-
matrix approach involves the reduction of computational operations to
the elementary multiplication of elements of the corresponding struc-
tures and allows efficient use of parallel algorithms, which significantly
accelerates the execution of computational tasks for the implementa-
tion of integral operators. In the research work the complexity of im-
plementation is estimated depending on the number of possible parallel
flows. The estimation of the suggested approximations of integral rep-
resentations is researched by model examples, in which there are mod-
els in the form of second- and third-degree polynomial integrals of
Volterra. The results of computational experiments showed that among
the considered quadrature methods, the trapezoidal method is optimal
in terms of «precision — complexity of implementation». The accura-
cy of the numerical implementation of integral models depends on the
chosen method, the simulation step, the type of kernel, and does not
depend on the dimensionality of the operator. The vector-matrix ap-
proach allows building of efficient algorithms for the numerical im-
plementation of integral models and greatly simplifies their software
implementation, as it allows easy scaling to a multidimensional case.
Such representation allows to use advantages of matrix-oriented pack-
ages of applications (Matlab, Octave, Scilab), the peculiarity of which
is the high speed of execution of matrix operations.

Key words: polynomial Volterra integral operators, quadra-
ture method, vector-matrix method.
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Introduction. The constant extension of the scope of integrated
models stimulates the development of methods and means of their numeri-
cal implementation [1, 3-8]. Moreover, depending on the objects studied
and the tasks, the basic ones for modeling linear dynamic systems based
on integral models are Volterra operators, and for nonlinear dynamic sys-
tems, polynomial Voltaire operators [4, 7, 8].

One of the effective methods of numerical implementation of integral
models is the method of quadrature formulas, which includes replacing of
the integral by an approximating system of algebraic representations with
respect to the discrete values of the desired function [2, 6, 9]. At the same
time, the upper bound of the integration is fixed in the Volterra models, and
formulas are used for approximate calculation of the integral. There are
many quadrature formulas. They include the formulas of Newton-Cotes (in-
cluding rectangles, trapezoids, Simpson), Gauss, Chebyshev, and others.
This gives rise to many approaches and methods for applying the quadrature
method. Cubature formulas [2] are applied to approximate polynomial inte-
gral models, but there is no general approach and definite recommendations
for their application, depending on the form of the integral model.

The key problem of applying the algorithms of the quadrature meth-
od in the numerical implementation of Volterra integral models with an
arbitrary kernel is the accumulation of the number of calculations at each
step of the computational process [2]. This especially becomes apparent in
the numerical implementation of polynomial integral operators. Therefore,
developing new approaches to the numerical implementation of Volterra
polynomial integral models that will accelerate the execution of necessary
operations at each step of the numerical implementation is an urgent task.

Algorithms for numerical implementation of the integral poly-
nomial Volterra operator. Consider the possibility of using quadrature
formulas of rectangles, trapezoids and Simpson for the numerical realiza-
tion of a nonhomogeneous Volterra integral polynomial operator of the
third degree

t
y(t):jKl(s)x(t—s)ds+
0
tt

+[ Ky (s1,5,) x(t=5,) x(t =5, ) ds,ds, + 1)
00
+.t[j..t[ K3(81’82’52)X(t_sl)x(t_sz)x(t_S3)d51d52d33.
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By entering a sustainable breaking down and replacing the inte-
grals (1) by quadratic sums, we obtain [2, 9]:
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In this formulation, the problem of numerical implementation arises
because of the complexity of describing multidimensional approximation
representations of integral operators and the considerable number of com-
putational actions. It is suggested to apply a vector-matrix approach with
the reduction of all operations to elementwise multiplication.

Consider separately homogeneous operators of the first, second and
third degrees. The coefficients 4;,, 4,, Ajare represented in vector-

matrix form. In the case of a one-dimensional operator of the coefficient
4, is determined by a vector that has a different view, depending on the
method used:
e rectangles:

A'=h(1 11 .11 0);

e trapeze:
Af:hlll...lll;
2 2
e Simpson:
. 1 4 2 2 41
4 =hl= — — .. — = =
(3 3 3 3 3 3}

When approximating a two-dimensional operator, we obtain matrices
that determine the coefficient 4, :

o for the method of rectangles:

11 1 ... 1 1
11 1 .. 1 1
11 1 .. 1 1
Ay =h?*| .. s
1 1 1 1 1
1
0 0 O 0 0
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o for the method of trapeze:

/4 1/2 1/2 .. 1/2 1/2 1/4
2 1 1 .. 1 1 12
2 1 1 .. 1 1 12
A2T=h2 PP
2 1 1 .. 1 1 12
2 1 1 .. 1 1 12
/4 1/2 1/2 .. 1/2 1/2 1/4

o for the Simpson method:

/9 4/9 2/9 .. 2/9 4/9 1/9
4/9 16/9 8/9 .. 8/9 16/9 4/9
2/9 8/9 4/9 .. 4/9 8/9 2/9

Il
>
N

4;
2/9 8/9 4/9 .. 4/9 8/9 2/9
4/9 16/9 8/9 .. 8/9 16/9 4/9
/9 4/9 2/9 .. 2/9 4/9 1/9
Replacing the triple integral with (1), we obtain a three-dimensional

structure containing the coefficients of quadrature formulas. It can be rep-
resented as a cube (Fig. 1). This structure can be determine as following:

A=A A AT L AT AT AT (3)
where A)'; AYZ AN L AT AT AT matrices of coeffi-
cient, which determined by the basic quadrature methods applied to each
dimension A; ;, As g, Ag)-

Using the rectangles method, we get the following matrices:

Y A i
111 ..110
111 .11
111 .11

:h3 :
111 11

1
0 0 0 0 0
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Fig. 1. Graphic representation of the structure (3)
Applying of the trapezoid method results in matrices:

At =430 =
18 14 14 .. 14 14 1/8
14 12 12 .. Y2 12 Y4
Y4 Y2 y2 .. 12 12 14
14 12 12 .. Y2 12 Y4
Y4 12 12 .. Y2 Y2 ya
Y8 14 Y4 .. Y4 14 18
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Va Y2 Y2 .. Y2 Y2 Y4

Y2 1 1 .. 1 1 12
Y2 1 1 .. 1 1 12
A=A == A" = = L
Y2 1 1 .. 1 1 12
Y2 1 1 .. 1 1 12
Y4 Y2 Y2 .. Y2 Y2 Y4

Applying the Simpson method, we have:

127 4/27 2/27 .. 2/21 4/27 1/27
4/27 16/27 8/27 .. 8/27 16/27 4/27
2/27 8/27 4/27 .. 4/271 8/21 2/27
A" =A™ = h3 L |
2/27 8/27 4/27 .. 4/271 8/27 2/27
4/27 16/27 8/27 .. 8/27 16/27 4/27
127 427 2/27 .. 2/21 421 1/27
AP = AT == AT =
4/27 16/27 8/27 .. 8/27 16/27 4/27
16/27 64/27 32/27 .. 32/27 64/27 16/27
8/27 32/27 16/27 .. 16/27 32/27 8/27 |.
8/27 32/27 16/27 .. 16/27 32/27 8/27
16/27 64/27 32/27 .. 32/27 64/27 16/27
4/27 16/27 8/27 .. 8/27 16/27 4/27
A§,3 :Ag,s :M:A;,Zm—l _
2/27 8/27 4/27 .. 427 8/27 2/27
8/27 32/27 16/27 .. 8/27 32/27 8/27
4/27 8/27 8/27 .. 8/27 827 4/27|
4/27 8/27 8/27 .. 8/27 8/27 4/27
8/27 32/27 8/27 .. 8/27 32/27 8/27
2/27 8/27 4/27 .. 421 8/21 2/27

Fig. 2 shows the structural representation of the specified operations
for different homogeneous operators and their programmatic analogy in
the Matlab environment.
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Structural representation and program implementation
Operator of the first degree

SA K X1 ]
sum(A.*K(1:3).*X1);
Operator of the second degree
PIDY A K X1 X2

sum(sum (A.*K(1:3,1:3) .*X1.*X2));
Operator of the third degree

XXX A K X1 X2 X3

sum (sum (sum (A.*K(1:3,1:9,1:3) .*X1.*X2.*X3)));
Operator of the n-th degree
sum (... (sum(A.*K(1:3,...,1:3).*X1.*....*Xn)));
Fig. 2. Structural representation and program implementation
of the vector-matrix approach
When implementing a first-degree operator: A — vector that defines
the coefficients of the quadrature formula in accordance with the shown
above; K — vector of kernel values according to the entered time variable
partition; X1 — vector of values of input influence. The programmatic
analogy of such representation is: sum (A.*K (1:73) .*X1). When the
implementation of operator of the second degree: 4 and K are matrices, X1
is a matrix consisting of identical rows of vector x; X2 is a matrix consist-
ing of identical columns of vector x. Elementwise operations are used in
software implementation. The general expression for calculating an opera-
tor is sum (sum (A.*K(1:73,1:73) .*X1.*x2)). Similarly, when im-
plementing an operator of the third degree, everything is reduced to ele-
ment-by-element operations, but already of three-dimensional structures.
This approach greatly simplifies the software implementation of pol-
ynomial operators because it allows easy scaling to a multidimensional
case, as shown in fig. 2.

Model experiments. The estimation of the suggested approximations
of integral representations was investigated on model examples.
Consider the model in the form:

tt 1 S, +S, — —_
Y(t):_[ %e o )Sin[T\E%Jsin[T\Esz]x(t—sl)x(t—sz)dsldsz.(4)
00

Figure 3 shows graphs of the transient characteristic of an object, de-
scribed by model (4), using the method of rectangles, trapezoids, Simpson,
and exact transient characteristics. Figure 4 shows the calculation errors.
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To analyze the numerical implementation of polynomial homogene-
ous Volterra operator of the third degree, consider the model

y(t) = jj‘jﬁe%@ﬁsﬁsﬁ) sin [ﬁsl]sin(ﬁszjsin[ﬁ%]x
000 4 2 2 2 5)
xx(t—s;)x(t—s, ) x(t—s;)ds;ds,ds,.
The transient characteristic obtained by the considered methods and
its exact value are presented in Fig. 5, calculation errors — in Fig. 6.
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Fig. 3. Graphs of the transient characteristic (4) obtained by different methods
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Fig. 4. Absolute errors of the calculation of transient characteristic for the model (4)
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Fig. 5. Graphs of the transient characteristics (5) obtained by different methods
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Fig. 6. Absolute errors of the calculation of transient characteristic for a model (5)

The obtained results of the computational experiments showed the ef-
fectiveness of the suggested methods, with the Simpsons method being the
most accurate among the considered methods but applying of this method
requires more computations that are associated with additional partitioning
to find intermediate values at interpolation points. Optimal in terms of
«accuracy — complexity of implementation» is the method of trapezoids,
which allows obtaining solutions with a relative error of less than 1%,
which is enough for engineering calculations.

It is important to note that the accuracy of implementation of integral
models depends on the method chosen, the simulation step, and the type of
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kernel and does not depend on the dimensionality of the operator. There-
fore, the choice of the «best» method should be based, first, on the analysis
of the kernel of the integral inhomogeneous polynomial Volterra operator.

Depending on the type of kernel, computational algorithms can be de-
veloped based on the use of different quadrature methods that are applied sep-
arately to each dimension. Moreover, not only the considered methods (of
rectangles, trapezoids, Simpsons), but also methods based on the combination
of Newton-Cotes quadrature formulas of higher order can be applied. Such
approach will allow obtaining different cubature formulas and will expand the
set of algorithms for approximation of integral models with finite sums and
will allow choosing the best method depending on the set initial problem.

The suggested approach makes it possible to accomplish natural par-
allelism of computational algorithms, which greatly accelerates the numer-
ical implementation of integral operators. Table 1 shows the complexity of
the numerical implementation of polynomial integral operators depending
on the number of possible parallel threads.

Table 1
The degree of complexity of the numerical
implementation of polynomial integral operators
Operator Operator Operator
of the first degree |of the second degree| of the third degree
Usual approach o(n) 0?(n) 0% (n)
Vector-matrix 0 (n) 02 (n) 03 (n)
kp kp kp

n — number of partition points, kp — number of parallel threads

Conclusions. Thus, the representation of quadrature and cubature formu-
las in vector-matrix form allows developing of effective algorithms and software
means for numerical implementation of integral models. This representation
allows taking advantages of matrix-oriented application packages (Matlab,
Octave, Scilab), the peculiarity of which is a high speed of matrix operations.
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BEKTOPHO-MATPUYHUIA METO[, YUCNOBOI PEANI3ALIT

NONIHOMIAINBbHUX IHTErPAIIbHUX ONMEPATOPIB BOJIbTEPPU

50

VY cTarTi po3IIAAAEThCS METO I KBAApaTyp UL YMCIOBOI peati3arlii modi-
HOMIaJIbHUX IHTErpaTbHUX oreparopiB. [Ipyn KoM toTepHiil peasizamii iHTer-
panbHUX MOzienel THITY BobTeppH XapakTepHOO MPOOIECMOI0 € HAKOMNYCHHS
KUTBKOCTI O0YHCIICH Ha KOXXHOMY KPOIIi OOUHCITIOBAILHOTO Tporiecy. [l io-
TO NPHIIBUIIICHHS TPOIOHYETHCS 3aCTOCOBYBATH BEKTOPHO-MAaTPUYHUH ITiT-
XiZ. B 0CHOBI 3aIponOHOBaHOTO MiIXO/Y JIKaTh METOIH KBaJpaTyp: IPsSIMO-
KyTHHKIB, Tparrerid, CimmicoHa. /I 0ZHOPIIHHUX MOJMIHOMIaIbHUX IHTETPalb-
HHX oreparopiB Bossreppy meprioro, Ipyroro Ta TpeTsoro CTEMeHs modyno-
BAHO, BI/MIOBITHO, Y BUIJIAAI BEKTOPIB, MaTPHIb Ta TPHUBHUMIPHHX CTPYKTYP
00’€eKTH, SIKi MICTATH Koe(ilieHTH BiINOBIIHUX KBagpaTypHHX (opMyi. 3a-
MPOTIOHOBAHHH BEKTOPHO-MAaTPUYHMI MiIXiJ Ilependayae 3BeaeHHs 00UHCITIO-
BJIBHUX ONEpaliil /0 MOENEeMEHTHOTO MHOXKECHHS €JIEMEHTIB BiJIITOBIHUX
CTPYKTYp Ta J103BOJIsI€ e(h)eKTHBHO BUKOPHCTOBYBATH MapaJieiibHi alrOPHTMH,
1110 3HAYHO MPHIIBHAIIYE BUKOHAHHS OOYMCITIOBAIBHIX 3a/1au peatizarii iHTe-
TPATBHUX OMEpaTopiB. B poOOTi OIIHEHO CKIIAHICTh peati3allii B 3aIeKHOCTI
BiJI KUTBKOCTI MOKJIMBUX MapaiebHUX MOTOKIB. OIIHKY 3aIpOHOHOBAHUX all-
pOKCHMalliif iHTerpaJbHUX MPECTaBIeHb JOCIIPKEHO Ha MOJIETIbHUX MPHKIIa-
J1aX, B SIKKX MPUCYTHI MOJIENi Y BHIVIAI MOJIHOMIANTBHHUX IHTErpalbHUX OIle-
patopiB BonbsTeppu Ipyroro ta TpeThoro creneHs. Pe3ynbsraTi 00uncIioBaib-
HUX EKCTIEPHMEHTIB MOKa3aJIH, IO cepesl PO3IVITHYTHX KBaPATYPHHX METOZIB
OINITUMAJIBHUM Y BiTHOIIECHHI «TOYHICTh — CKJIAJHICTh peai3amii» € MeTo
Tparrentiit. TOYHICTH YMCIOBOI pealti3allii iIHTerpalbHIX MOJEIICH 3alIeXKUTh BiJ
BHOPAHOTO METOMY, KPOKY MOJCITIOBaHHS, BHAY spa, 1 HE 3aJIeXUTh Bijl PO3-
MIpHOCTI omieparopa. BekropHo-MaTpuaHMil miaxia no3Bossie OyayBaTh edek-
THBHI aJITOPUTMH JUIS YMCIIOBOI peati3allii IHTerpalbHIX MOJIeIeH Ta 3HaYHO
CIIPOIIYE iX MPOTpaMHy peai3allifo, OCKUIBKU J03BOJIIE JIETKE MacIITabyBaH-
Hs1 710 6aratoBHMIpHOTO BHITQ/IKY. TaKe MpeICTaBIICHHS Ia€ 3MOT'Y BUKOPHCTO-
BYBaTH IEPEBard MaTPUYHO-OPIEHTOBAHMX TAKETIB MPUKJIAIHHX HPOrpam
(Matlab, Octave, Scilab), 0coOIHBICTIO SIKHX € BHCOKA IIBHIKICTh BHKOHAHHS
MaTpHYHHUX OTeparliil.

KuiouoBi ciioBa: noninomiansui inmeepanvhi onepamopu Bonvmeppu,
Memoo Keaopamyp, 6eKMOPHO-MAMPUUHUL MEMOO.
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