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INTELLIGENT OBJECT-ORIENTED APPROACH
TO DYNAMIC ENERGY SYSTEMS’ MODELLING

Proposed object-oriented approach and general architecture of
intellectual software for mathematical modelling of dynamic ener-
gy systems. Introduced and considered in detail an architecture of
knowledge bases for modelling of systems described by linear in-
tegral equations. Considered a knowledge-based system as a com-
position of a specific functional network and an expert system.
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Introduction and problem set up. New techniques for modelling of
complicated energy systems are being rapidly developed. There is a broad
spectrum of available simulation packages, however the main scientific
problem which remains actual is a need in advancing of intelligent support
for end-users. Here innovative mathematical modelling methods and cor-
responding intelligent software development concept should be applied.
Generally, any scientific problem, including the indicated above, can be
described by means of algebraic, differential, integral or other mathemati-
cal equations, graphs, logical descriptions etc.

There are many methods for dealing with these model descriptions,
many of them have got their software implementation. If a user could
specify exactly which method should be applied for solving current task, it
would not encounter serious problems. The user could call appropriate
procedure or even create a new code for the algorithm. But the typical
problem is that it’s unclear which proper method to use for solving the
task, also the parameters of the method could be unknown. Frequently it
requires deep knowledge in mathematics and modelling, and advanced
capabilities to formalize the problem and to build a mathematical model.
Then user deals with fuzzy descriptions instead of exact models.

Another problem is the following. There are many techniques of choos-
ing and optimizing parameters of specific algorithms. These techniques are
commonly implemented in the programs performing the algorithms. But it
appears useful to move the parameters selection, optimization etc. from the
level of specific programs to the kernel of the modelling environment. This
approach makes program engineers’” work significantly effective.
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Therefore, the problem of creating advanced intellectual environ-
ments for solving practical problems of computer modelling of dynamic
energy objects appears to be very urgent.

Object-oriented approach and intelligent software development
concept used. According to the common approach, when user makes a
query to the dialog system, the system should accomplish three stages:

e translation of the query to the inner language of the system;

e processing the query formulated in the inner language for getting answer;

e reverse translation of the answer formulated in the inner system lan-
guage to the user’s language.

For dynamic energy objects considered in this article, the language of
mathematical formulae and mathematical equations can be regarded as the
inner language of the modelling system. Therefore, we can consider the
following proposed more detailed stages:

e translation of fuzzy user’s query to a mathematical model;
¢ solving of the model for getting inner answer;
e reverse translation of the answer.

This paper is focused mainly on the second stage. Conversely to the
first and the third stages, the second stage does not depend upon the sub-
ject. We consider a mathematical model being known. The problem then is
to automate selection of algorithms and their parameters as well as choos-
ing relevant forms of data representation.

Some general principles of creating knowledge bases on the algo-
rithms for solving model equations given in [1]. According to the approach
proposed in current paper, a functional network, which is the particular
case of more common semantic networks, should be constructed. Here we
consider application of this approach to the specific, however very power-
ful type of equations used for modelling, — to the linear integral equations
of the following kind [2, 3]:

b
[K(ts)y(s)ds+y(t)=u(t). )
a

As specified above, generally the main tasks in the problem of
creating modern intellectual environments for dynamic energy objects’
modelling are: translation of user's queries to the inner languages of math-
ematical models; and automation of selecting the proper methods and get-
ting optimal parameters for these methods.

More formally, the solving of the user's query Q can be described as
following composition:

R=Ls (Uu (Ls" (Q))), @)
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where R is the system reply, Ls* is the translation of original query which
depends upon the semantic context S. This semantic context depends on
the knowledge about the subject, the user's features, the goals of the dia-
log, the language, the own opportunities of the system, etc. The result of
this translation is the specific mathematical model. Ls™ is the inverse trans-
lation. Uw is the solving operator for the obtained model; it takes into ac-
count the knowledge base M about mathematical methods. This
knowledge base doesn’t depend on the subject. It contains knowledge
about the representing of mathematical entities (functions, vectors, matrix-
es, operators etc.), about the methods for solving specific equations, etc.
Here we consider the operator Um only. To specify this operator firstly
we should describe the knowledge base. So, the objective is developing the
object-oriented approach which considers the processing as an interaction of
some interconnected classes. We can introduce different levels of such de-
scription. Here we consider four levels: the black box level; the generating
process level; the functional network level and the data structures level.

The black box level is the highest one. It deals with the connections
determined by the operator equation
AS=n. ©))
Both & and 7 are objects of the class FUNCTION but their roles in
the equation are different. We introduce two roles: KNOWN and
UNKNOWN. Then any function g can be represented as
g = IS_A(FUNCTION, Role, ID), (4
where ID is a set of parameters which distinguish this function from the
others.
Then the connection is described in the following way:
Operator (IS_A(FUNCTION, Rolel, ID1),
IS_A(FUNCTION, Role2, ID2), IS_A(FUNCTION, Role3, ID3). (5)
The Operator can be regarded as a method of some other class. But it
can be described as a specific class which depends upon the Role. This
class is formed by three subclasses:
e Q is an operator for solving the direct problem which appears when
Rolel = KNOWN, Role2 = KNOWN, Role3 = UNKNOWN;
e R is an operator for solving the inverse problem which appears when
Rolel = UNKNOWN, Role2 = KNOWN, Role3 = KNOWN;
e S is an operator for getting A; in this case Rolel = KNOWN,
Role2 = UNKNOWN, Role3 = KNOWN.
The methods for solving specific equations and the software which im-
plements these methods can be described as objects of the classes Q, R, S.
The next level is the level of generating processes. It depends upon
the kind of equations. Here we consider the indicated above linear integral
equations of the (1) kind.
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There is a wide choice of methods and specific software modules for
solving these equations (for instance given in [4-10]). According to the
proposed approach given specific programs should be integrated into the
knowledge base, and this base has to provide the user possibility/tools to
solve the three types of tasks:

o direct tasks (y(t) and K(t, s) are known; u(t) is to be found);
o reverse tasks (u(t) and K(t, s) are known; y(t) is to be found);
o identification tasks (u(t) and y(t) are known; K(t, s) is to be found);

The particular case of such equations is the Fredholm integral equa-
tions of the 1-st kind [11-14], which have many important applications, for
example, the signal restoration problem. This problem is commonly for-
mulated in the following way: to obtain a required signal from experi-
mental data by means of solving an operator equation

Ay =u, (6)
where u is an available experimental signal, y is a required/sought signal,
A is a certain distorting operator, here we regard it as an integral operator.

This problem is incorrect since the inverse operator does not exist or
isn't limited. We can apply methods of solving such problems based on
specific regularization procedures. These procedures should significantly
rely upon the available preliminary information about the solution. There
are many procedures of this type but there is a lack of general recommen-
dations how to apply them properly. The most common algorithms are
Tikhonov method [15, 16], Lavrentiev method [17], etc.

The information model which describes this problem is formalized as
a triplet Vy =<Q, M, F>, where Q is a set of generating random processes;
functions u(t) and y(t) may be regarded as realizations of these processes;
M is a set of model spaces where the realizations may be projected to; F is
a set of various dependencies between the elements of o(Q" U M), where
Q" is a set of all random processes’ realizations from Q, o(Q) is a set of all
subsets of the set Q.

Model spaces determined by some sets of coordinate functions are
crucially important. These are, for example, spaces determined by Fourier,
Karhunen-Loeve and other expansions.

The Karhunen-Loeve expansion is known to be an optimal linear ex-
pansion in respect of data compression. Moreover, Fourier spectral func-
tions of non-stationery random processes depend upon two variables.
Therefore, use of Fourier expansion for analysis of non-stationery process-
es encounters difficulties. Then the Karhunen-Loeve expansion might be
applied instead of the Fourier one [18].

Another positive feature of the Karhunen-Loeve expansion appears
when we are solving inverse tasks described by integral equations. This is just
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the particular case considered in this article. If we expand input functions by
the eigenfunctions of the kernel, then we can use eigenfunctions method
which enables to solve inverse problems in a more convenient way.

The next level is the level of the functional network. Following the
principles of conceptional programming [19], we develop a specific func-
tional network for integral equations (1). Here we apply the object-
oriented approach and consider our functional network as a composition of
some basic objects.

The general architecture of the proposed functional network is repre-
sented in the figure 1.

1-st ) 1—.st 1-st )
representation algorithm representation
N-th ) N—t.:h N-th ]
representation algorithm representation
Y A u
Specific K Specific
functions functions
1-st )
representation
Specific
functions
- N-th ]
representation

Fig. 1. General architecture of the functional network
The functional network, describing the whole model, can be seen as the
top-level object. It consists of three basic objects Y, A, U and K. They describe
y(t), transformation operator, u(t) and the kernel K(t, s) respectively.
It is important, that the objects Y, U, K demand two lines of descendants.
The first line is the representation line. It describes the different representa-
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tions of the functions such as the values in the discrete points, spectral coeffi-
cients of Fourier, Karhunen-Loeve etc. The second line is the line of specific
functions. Eventually, the descendants of the object A are the programs which
perform the specific algorithms for solving direct and reverse tasks.

Functions y(t), u(t), K(t, s) can be represented in the following way:

Object = IS_A(FUNCTION, Role, M, ID), @)

where M is a certain model space. Moreover, here we can introduce the
new class VECTOR which describes functions in some model spaces.

The nodes of the functional network are interconnected connected.
The links are the following:

¢ links between different representations of the same function;
o links between input and output functions; these links can be realized by
specific methods.

Then the accomplishment of the user's task can be considered as the
searching of a path through the graph from an initial object to the target object.

This can be specified for each individual case. Thus, if the user wants to
solve a direct task, he/she should specify the descendants of the Y by pointing
them in interactive way. These descendants are the specific function and its
representations. Then the user should specify the kernel. The linked objects are
activated automatically until this reaches descendants of U.

If user wants to solve the reverse task, he should specify u(t) and
K(t, s) in the same way. The activation is transmitted through the network
in the reverse order.

Thus, this provides the selection of the proper method and its param-
eters. The environment must enable the user to specify the algorithm for
solving the problem. The situation when the selected algorithm demands
another representation of the input function is very typical, then the links
between different representations of the same function should be involved.

Another general situation arises when there are different algorithms for
solving the problem, or the user doesn’t know which parameters are to be
applied for the method. So, this demands another part of the knowledge
base — an expert system. This expert system should accumulate an experi-
ence of solving integral equations and contain recommendations about ap-
plying specific algorithms. This may be, for example, a production system
with the sort of rules as the following: «If the function has representation G
with parameters H, the algorithm X with parameters Y should be applied».

For reflecting possible uncertainties, these rules may be fuzzy. Let us
consider the case with one parameter only, other cases are similar. Then,
the rules of the production system may be formulated, for example, in the
following way:

G [a,, a,] > (ua (H)), (12 (c)) H(c). (8)
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This means that if a function is represented in a model space G and
its coordinate in this space varies from ai to a,, then the fuzzy function s,

is a degree of certainty that the algorithm H should be applied; the fuzzy
function g is a degree of certainty that this algorithm should be applied
with the parameter ¢. Then the method and its parameters may be deter-
mined by minimizing respective fuzzy functions. Here also should be con-
sidered the function which determines the rules of changing fuzzy func-
tions while accumulating the experience.

On the data structures level, all structures of the classes should be
specified in detail.

According to the general object-oriented approach proposed, we con-
sider at least two categories of users dealing with the environment:

o end-users who apply the environment for solving their practical tasks;

e experts who determine rules of applying specific algorithms and links
between the nodes of the functional network. Experts can also create
programs for specific algorithms; the special language should be sug-
gested for this purpose.

Now we can summarize the general structure of the intellectual mod-
elling environment, which includes the following main modules:

end-user's interface;
expert’s interface;

e interpreting system, which should provide translation of fuzzy formulated
queries to specific mathematical models as well as return translation;

e knowledge-based system for mathematical modelling which is the
combination of functional network (such network for the particular
case was described above) and expert production system determining
the use of the specific algorithms;

e simulation system for experimental investigations;

¢ archive database for storing results of experiments.

Conclusions. Thus, the concept and principles formulated above,
particularly, proposed object-oriented approach and general architecture of
intellectual software, introduced knowledge-based architecture for model-
ling the linear integral equations described systems as a composition of
specific functional network and expert system, creates fundamentals for
development of intellectual simulation program environment for solving
practical problems of dynamic energy objects’ computer modelling (using
suggested program languages C++, Java and Matlab/Simulink).
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IHTENEKTYANbHUA OB'€EKTHO-OPIEHTOBAHUI MIAXIA 0O
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MOOENOBAHHA AUHAMIYHUX EHEPTETUYHUX CUCTEM

3anponoHoBaHHUN 00'€KTHO-OPIEHTOBAHHH MMIAXIM Ta 3arajbHa apXiTeK-
Typa IHTENeKTyalbHOTO MPOrpaMHOro 3abe3MeueHHs Ul MaTeMaTHYHOTO
MOJICITIOBaHHS JUHAMIYHUX SHepreTH4Hux cucreM. [IpencraBineHo Ta Jie-
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TaJILHO PO3TJITHYTO apXiTEeKTypy 0a3 3HaHb JUIS MOJICIIOBAHHS CHCTEM, L0
ONHUCYIOThCA JIHIHHUMHU 1HTETPaJbHUMH PIBHAHHAMH. Po3rnisHyTHH CHC-
TeMa, 3aCHOBaHa Ha 3HAHHAX Y BUIVIAII KOMITO3HLIi KOHKPETHOI (yHKIiO-
HaJIbHOT MEpEeXi Ta eKCIEPTHOT CUCTEMH.

KirouoBi cioBa: mooeniosanus, ounamiuni cucmemu, iHmenekmyaisb-
He npozpamue 3abe3neyenns, iHmezpaibti piGHAHHA, 6A3a 3HAHb, PYHKYIO-
HAIbHA Mepedcd, eKCNepmHa cucmemd.
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MOQOENNb XUTTEBOIO LUUKNY AEPEKTY
NMPOrPAMHOIO 3ABE3MNEYEHHA

IMpornec po3poOKkK MporpaMHOro 3abe3ledyeHHs BKIOYaE B cebe
000B'SI3KOBHI1 TOAATKOBUH MpoIieC 3a0e3MeUeHHs SKOCTI IIPOrpamMHOro
3a0€3IeUeHHs, IKUH SBJSE COOOK0 CYKYIHICTD 3aXOJiB, IO OXOILTIO-
I0TB BCl TEXHOJIOTTYHI €Tary po3poOKH, BUITYCKY Ta €KCILTyaTarlii mpo-
TpaMHOTO 3a0e3reueHHs iHPOPMAIIHIX CUCTEM, III0 TIPOBOIATHCS Ha
PI3HHX eTamax HUTTEBOTO UKy TPOrpaMHOro 3a0e3nedeHHs Ui 3a-
Oe3nedyeHHs: HeOOXiTHOTO PIBHS SIKOCTI IPOrPaMHOTO 3a0e3MeYeHHs.
OpHe 3 OCHOBHHX 3aBJaHb TAaKOTO NPOLIECY MOJIIrac B 3HAXOMKEHHI 1
ycyHeHHi JieekTiB mporpamuoro 3abesneyeHHs. JlaHa poboTa mpuc-
BsiYeHa (hOPMaJBEHOMY IIPEICTABICHHIO JKMTTEBOTO IMKIY JedeKTy
MPOTPaMHOTO 3a0e3nedeHHs. Moelb KUTTEBOTO IHKITY AEPEKTy
HPOrPaMHOTO 3a0e3MeUeHHs PO3IIIAAAETHCS K JIAHIIOXKOK, SKUH T10-
YHHAETHCS 3 TIOMUIIKH PO3POOHHKA 1 3aKIHIY€ETHCA BiZIMOBOIO TIPOTpa-
MHOTO 3a0e31edeHHs. Y CTaTTi MOJAEThCs 3arajibHa CTPYKTypa MOJIei
Je(eKTy KUTTEBOTO LUKITY POrPAMHOTO 3a0€3MeUeHHs, SKa BKIII0Yae
B ceOe MOMUJIKY PO3POOHHKA, TOMHJIKY OIepaTopa, MPUXOBaHUH Jie-
(ekT y nmporpamMmHOMy 3a0e3reueHH i, akTHBHUI AedeKT y mporpamMHo-
My 3a0e3reueHHi, MOMIJIKY OO4McieHHs, 30iif abo BiAMOBY, mOpo-
JDKEHY BpPa3JMBICTb, aKTHBOBAHY BPa3JIMBICTh, HECAHKIIOHOBAHE YII-
PpaBJIiHHS Ta HECAHKIIIOHOBaHMi IOCTYI /10 JaHuX. Taka Mozeb aera-
J3YeThCS B HaOIp MATOJNIOTTYHHUX JIAHIFOXKKIB, SIKI CTPYKTYPHO TIPEa-
CTaBIISTIOTh MOU(IKAIIT )KUTTEBOTO IUKITY AePEKTY MPOrPaMHOTO 3a-
Oe3redeHHs 3 ypaxyBaHHSIM IPUPOAN BUHHKHEHHsS caMoro aedexty
nporpamMHoro 3abe3neueHHs. Cepel MaToNONYHUX JTAHITFOXKKIB BUITI-
JSIIOTh HACTYMHI: (i3MYHMI, POEKTYBaHH:], PO3POOKH Ta B3aEMOL.
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