УДК 539.3

А. Ф. Верлань^{*}, д-р техн. наук, **И. О. Горошко**^{*}, канд. техн. наук,

Б. А. Худаяров**, д-р техн. наук

*Институт проблем моделирования в энергетике им. Г.Е. Пухова НАН Украины, г. Киев,

**Ташкентский институте ирригации и мелиорации, г. Ташкент

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ФЛАТТЕРА ВЯЗКОУПРУГИХ ПЛАСТИН В СВЕРХЗВУКОВОМ ΠΟΤΟΚΕ ΓΑЗΑ

Исследуется нелинейный флаттер вязкоупругой пластины, обтекаемой потоком газа. При помощи метода Бубнова-Галеркина задача сведена к исследованию системы обыкновенных интегро-дифференциальных уравнений (ИДУ). Решение ИДУ находится численным методом, основанным на использовании квадратурных формул. На основе этого метода разработан алгоритм численного решения задачи. Приведены результаты расчетов критической скорости флаттера.

Ключевые слова: вязкоупругие пластинки, флаттер, интегро-дифференииальные уравнения.

В настоящее время все большее распространение в авиационных конструкциях получают композиционные материалы. В связи с этим актуальное значение приобретает разработка методов расчета отдельных элементов летательных аппаратов, выполненных из композиционных материалов [1-5].

В настоящей работе исследуется нелинейная задача флаттера вязкоупругой пластины, обтекаемой с внешней стороны сверхзвуковым потоком. На основе численного метода [6] описан алгоритм численного решения задачи.

Ранее в работах [7-13] и других уже рассматривались подобные задачи для упругой пластинки и оболочки в сверхзвуковом потоке газа.

Рассмотрим нелинейную задачу о флаттере вязкоупругой пластины. Пусть пластина со сторонами а и b, обтекается с одной стороны сверхзвуковым потоком газа. Аэродинамическое давление учитываем по поршневой теории [14].

Уравнения Кармана в декартовой системе координат относительно перемещений и, v и w, с учетом вязкоупругих свойств материала конструкций, можно записать в следующем виде [15]:

Математичне та комп'ютерне моделювання

$$(1-R^{*})\left\{\frac{\partial^{2}u}{\partial x^{2}}+\frac{1-\mu}{2}\frac{\partial^{2}u}{\partial y^{2}}+\frac{1+\mu}{2}\frac{\partial^{2}v}{\partial x\partial y}+L_{1}(w)\right\}-\rho\frac{1-\mu^{2}}{E}\frac{\partial^{2}u}{\partial t^{2}}=0,$$

$$(1)$$

$$(1-R^{*})\left\{\frac{\partial^{2}v}{\partial y^{2}}+\frac{1-\mu}{2}\frac{\partial^{2}v}{\partial x^{2}}+\frac{1+\mu}{2}\frac{\partial^{2}u}{\partial x\partial y}+L_{2}(w)\right\}-\rho\frac{1-\mu^{2}}{E}\frac{\partial^{2}v}{\partial t^{2}}=0,$$

$$D(1-R^{*})\nabla^{4}w+L_{3}^{*}(u,v,w)+\rho h\frac{\partial^{2}w}{\partial t^{2}}=q.$$

$$3gecb$$

$$L_{1}(w)=\frac{\partial w}{\partial x}\frac{\partial^{2}w}{\partial x^{2}}+\frac{1+\mu}{2}\frac{\partial w}{\partial y}\frac{\partial^{2}w}{\partial x\partial y}+\frac{1-\mu}{2}\frac{\partial w}{\partial x}\frac{\partial^{2}w}{\partial y^{2}},$$

$$L_{2}(w)=\frac{\partial w}{\partial y}\frac{\partial^{2}w}{\partial y^{2}}+\frac{1+\mu}{2}\frac{\partial w}{\partial x}\frac{\partial^{2}w}{\partial x\partial y}+\frac{1-\mu}{2}\frac{\partial w}{\partial y}\frac{\partial^{2}w}{\partial x^{2}},$$

$$L_{3}^{*}(u,v,w)=-\frac{Eh}{1-\mu^{2}}\frac{\partial}{\partial x}\left\{\frac{\partial w}{\partial x}\left(1-R^{\bullet}\right)\left[\frac{\partial u}{\partial x}+\mu\frac{\partial v}{\partial y}\right]+$$

$$+\frac{1-\mu}{2}\frac{\partial w}{\partial y}\left(1-R^{*}\right)\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right\}-\frac{Eh}{1-\mu^{2}}\frac{\partial}{\partial y}\left\{\frac{\partial w}{\partial y}\left(1-R^{*}\right)\left[\mu\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right]+$$

$$+\frac{1-\mu}{2}\frac{\partial w}{\partial x}\left(1-R^{*}\right)\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right\},$$

где D — цилиндрическая жесткость; μ E, ρ — коэффициент Пуассона, модуль упругости и плотность материала; h — толщина пластин-

ки; R^* — интегральный оператор вида: $R^*\phi(t) = \int_0^t R(t-\tau)\phi(\tau)d\tau$; $R(t-\tau)\phi(\tau)d\tau$

$$\tau$$
) — ядро релаксации; $q = -B \frac{\partial W}{\partial t} - BV \frac{\partial W}{\partial x} - B_1 V^2 \left(\frac{\partial W}{\partial x}\right)^2 - \dots$

аэродинамическое давление, определяемое по теории Ильюшина.

При изгибе в срединной поверхности возникают нормальные и касательные усилия:

$$N_{x} = \frac{Eh}{1-\mu^{2}} \left(1-R^{*}\right) \left(\varepsilon_{x}+\mu\varepsilon_{y}\right) \quad (x \Leftrightarrow y), \quad N_{xy} = \frac{Eh}{2(1+\mu)} \left(1-R^{*}\right) \varepsilon_{xy},$$

где ε_x , ε_y , ε_{xy} — компоненты конечной деформации, определяемые формулами [15]:

$$\varepsilon_x = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2, \quad \varepsilon_y = \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2, \quad \varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}$$

Моменты M_x , M_y и M_{xy} определяются через функцию прогиба *w*:

$$\begin{split} M_{x} &= -D \Big(1 - R^{*} \Big) \Bigg(\frac{\partial^{2} w}{\partial x^{2}} + \mu \frac{\partial^{2} w}{\partial y^{2}} \Bigg), \\ M_{y} &= -D \Big(1 - R^{*} \Big) \Bigg(\frac{\partial^{2} w}{\partial y^{2}} + \mu \frac{\partial^{2} w}{\partial x^{2}} \Bigg), \\ M_{xy} &= D \Big(1 - \mu \Big) \Big(1 - R^{*} \Big) \frac{\partial^{2} w}{\partial x \partial y}. \end{split}$$

Будем искать приближенное решение системы (1) в виде

$$u(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} u_{nm}(t) \cos \frac{n\pi x}{a} \sin \frac{m\pi y}{b},$$

$$v(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} v_{nm}(t) \sin \frac{n\pi x}{a} \cos \frac{m\pi y}{b},$$

$$w(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} w_{nm}(t) \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b}.$$
(2)

Подставляя (2) в систему (1) и применяя метод Бубнова-Галёркина, получим систему ИДУ. Введя в ИДУ следующие безразмерные величины $\frac{x}{a}, \frac{y}{b}, \frac{u}{h}, \frac{v}{h}, \frac{w}{h}, \frac{V_{\infty}t}{a}$ и сохраняя при этом прежние обозначения, запишем

$$\begin{split} \vec{u}_{kl} + (1 - R^{*}) M_{E} \pi^{2} \left\{ \alpha_{kl} u_{kl} + g_{kl} v_{kl} + \frac{k_{g}}{\pi \lambda_{1}} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} D_{k \ln mir} w_{nm} w_{ir} \right\} = 0, \\ \vec{v}_{kl} + (1 - R^{*}) M_{E} \pi^{2} \left\{ g_{kl} u_{kl} + \beta_{kl} v_{kl} + \frac{k_{g} \lambda}{\pi \lambda_{1}} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} E_{k \ln mir} w_{nm} w_{ir} \right\} = 0, \\ \vec{v}_{kl} + M_{\lambda} \vec{w}_{kl} + (1 - R^{*}) \Omega \omega_{kl} w_{kl} - \\ -k_{g} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} w_{nm} (1 - R^{*}) \left\{ A_{k \ln mir} u_{ir} + B_{k \ln mir} v_{ir} + C_{k \ln mir} w_{ir} \right\} \Omega + \\ + \chi M_{p} \left(2\lambda_{1} M^{*} \sum_{n=1}^{N} \gamma_{nk} w_{nl} + \frac{\chi + 1}{4} M^{*2} k_{a} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} \Gamma_{k \ln mir} w_{nm} w_{ir} \right) = 0, \\ k = \overline{1, N}; \quad l = \overline{1, M}; \end{split}$$
(3)

где

17

$$\begin{split} \Omega &= \frac{M_E}{1-\mu^2}, \quad \alpha_{kl} = \frac{k^2}{1-\mu^2} + \frac{l^2\lambda^2}{2(1+\mu)}, \quad \beta_{kl} = \frac{k^2}{2(1+\mu)} + \frac{\lambda^2 l^2}{1-\mu^2}, \\ g_{kl} &= \frac{kl\lambda}{2(1-\mu)}, \quad \omega_{kl} = \frac{\pi^4}{12\lambda_1^2} \Big(k^2 + l^2\lambda^2\Big)^2, \quad M^* = \frac{V_\infty}{V}, \\ M_E &= \frac{E}{\rho V_\infty^2}, \quad M_p = \frac{p_\infty}{\rho V_\infty^2}, \quad \lambda_l = \frac{a}{h}, \quad M_\lambda = \frac{\chi\lambda_l}{\lambda} M_p, \\ D_{k\ln mir} &= \frac{ml^2}{1-\mu^2} \Delta_{1k\ln mir} + \frac{mr^2\lambda^2}{2(1+\mu)} \Delta_{1k\ln mir} - \frac{imr\lambda^2}{2(1-\mu)} \Delta_{2k\ln mir}, \\ E_{k\ln mir} &= \frac{mr^2\lambda^2}{1-\mu^2} \Delta_{3k\ln mir} + \frac{ml^2}{2(1+\mu)} \Delta_{3k\ln mir} - \frac{nir}{2(1-\mu)} \Delta_{4k\ln mir}, \\ A_{klmnir} &= \frac{\pi}{\lambda_l} \bigg\{ \bigg(\frac{n^2i}{\lambda} + m^2i\lambda\mu \bigg) \Delta_{7k\ln mir} + 2(1-\mu)nmr\lambda\Delta_{8k\ln mir} - \\ &-n \bigg(\frac{i^2}{\lambda} + r^2\lambda \bigg) \Delta_{5k\ln mir} - (1-\mu)mir\lambda\Delta_{6k\ln mir} \bigg\}, \\ B_{klnmir} &= \frac{\pi}{\lambda_l} \bigg\{ \bigg(n^2r\mu + m^2r\lambda \bigg) \Delta_{7k\ln mir} + 2(1-\mu)nmi\Delta_{8k\ln mir} - \\ &-nir(1+\mu)\Delta_{5k\ln mir} - m\bigg(i^2+\lambda^2r^2\bigg) \Delta_{6k\ln mir} \bigg\}, \\ C_{klnmir} &= \frac{n\beta_l}{\lambda} (k_x + \mu k_y) (n\Delta_{7k\ln mir} - i\Delta_{5k\ln mir}) + \\ &+ m\lambda\beta_l(k_x\mu + k_y) (m\Delta_{7k\ln mir} - r\Delta_{6k\ln mir}), \\ \Gamma_{klnmir} &= ni(\gamma_{k+n+i} - \gamma_{n-k-i} + \gamma_{h-n-i} + \gamma_{k+n-l}) \times \\ &\times (\gamma_{m-r+l} - \gamma_{m-r-l} - \gamma_{m+r+l} + \gamma_{m+r-l}), \\ \Delta_{1k\ln mir} &= \gamma_{1kni}\gamma_{3lmr}, \quad \Delta_{2k\ln mir} = \gamma_{4kni}\gamma_{3lmr}, \quad \Delta_{6k\ln mir} = \gamma_{3kni}\gamma_{4lmr}, \\ \Delta_{7k\ln mir} &= \gamma_{4kni}\gamma_{2lmr}, \quad \Delta_{8k\ln mir} = \gamma_{4kni}\gamma_{4mr}, \\ \gamma_{1kni} &= \gamma_{k-n+i} + \gamma_{k-n-i} - \gamma_{k-n-i} + \gamma_{k+n-i}, \\ \gamma_{2kni} &= \gamma_{k-n+i} - \gamma_{k-n-i} + \gamma_{k-n-i} + \gamma_{k+n-i}, \\ \gamma_{2kni} &= \gamma_{k-n+i} + \gamma_{k-n-i} + \gamma_{k-n-i} + \gamma_{k-n-i}, \\ \gamma_{k-n} &= \gamma_{k-n+i} + \gamma_{k-n-i} + \gamma_{k-n-i} + \gamma_{k-n-i}, \\ \gamma_{k-n} &= \gamma_{k-n+i} + \gamma_{k-n-i} + \gamma_{k-n-i} + \gamma_{k-n-i}, \\ \gamma_{k-n} &= 0 \text{ MJU K-VETHOE}, \\ \gamma_k &= \begin{cases} 0, & \text{ CTM K} - \text{ HeveTHOE}. \end{cases}$$

Интегрируя систему (3) два раза по *t*, запишем ее в интегральной форме. Полагая затем $t=t_i$, $t_i=ih$, i=1,2,... (h=const) и заменяя интегралы квадратурными формулами трапеций для вычисления $u_{ikl}=u_{kl}(t_i)$, $v_{ikl}=v_{kl}(t_i)$ и $w_{ikl}=w_{kl}(t_i)$, получим следующие рекуррентные формулы при ядре Колтунова-Ржаницына $(R(t) = A \cdot \exp(-\beta t) \cdot t^{\alpha-1}, 0 < \alpha < 1)$:

$$\begin{split} u_{pkl} &= u_{0kl} + u_{okl} t_p - \\ &- \sum_{j=0}^{p-1} A_j (t_p - t_j) \left\{ M_E \pi^2 \left[\alpha_{kl} \left(u_{jkl} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) u_{j-skl} \right) + \\ &+ g_{kl} \left(v_{jkl} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) v_{j-skl} \right) + \\ &+ \frac{k_g}{\pi \lambda_1} \sum_{n,i=1}^N \sum_{m,r=1}^M D_k \ln mir \left(w_{jnm} w_{jir} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) w_{j-snm} w_{j-sir} \right) \right] \right\}, \\ v_{pkl} &= v_{0kl} + v_{okl} t_p - \\ &- \sum_{j=0}^{p-1} A_j (t_p - t_j) \left\{ M_E \pi^2 \left[g_{kl} \left(u_{jkl} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) u_{j-skl} \right) + \\ &+ \beta_{kl} \left(v_{jkl} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) v_{j-snm} w_{j-sir} \right) \right] \right\}, \\ w_{pkl} &= \frac{1}{1 + A_p M_\lambda} E_k \ln mir \left(w_{jnm} w_{jir} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) w_{j-snm} w_{j-sir} \right) \right] \right\}, \\ w_{pkl} &= \frac{1}{1 + A_p M_\lambda} \left\{ w_{0kl} + \left(\sum_{w_{0kl} + M_\lambda w_{0kl} \right) t_p - \sum_{j=0}^{p-1} A_j \left(M_p w_{jkl} - (t_p - t_j) \right) \times \right. \\ &\times \left[\chi M_p \left(2\lambda_1 M^* \sum_{n=1}^N \gamma_{kn} w_{jnl} + \frac{\chi + 1}{4} M^{*2} k_a \sum_{n,i=1}^N \sum_{m,r=1}^M \Gamma_{k\ln mir} w_{jnm} w_{jir} \right) + \\ &+ \Omega \omega_{kl} \left(w_{jkl} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) w_{j-skl} \right) - \\ &- \Omega k_g \sum_{n,i=1}^N \sum_{m,r=1}^M w_{jnm} \left\langle A_{k\ln mir} \left(u_{jir} - \frac{A}{\alpha} \sum_{s=0}^j B_s \exp(-\beta t_s) u_{j-skl} \right) + \\ \end{array}$$

19

$$+B_{k\ln mir}\left(v_{jir} - \frac{A}{\alpha}\sum_{s=0}^{j}B_{s}\exp(-\beta t_{s})v_{j-sir}\right) + C_{k\ln mir}\left(w_{jir} - \frac{A}{\alpha}\sum_{s=0}^{j}B_{s}\exp(-\beta t_{s})w_{j-sir}\right) \right) \right) \right),$$
$$p = 1, 2, ...; \qquad k = \overline{1, N}; \qquad l = \overline{1, M}; \qquad (4)$$

 $\mathbf{\Gamma}$

пде
$$A_0 = \frac{h}{2};$$
 $A_j = h;$ $j = \overline{1, i-1};$ $A_i = \frac{h}{2};$ $B_i = \frac{h^{\alpha}}{2};$
 $B_j = \frac{h^{\alpha} \left(j^{\alpha} - (j-1)^{\alpha}\right)}{2};$ $s = j;$ $B_s = \frac{h^{\alpha} \left((s+1)^{\alpha} - (s-1)^{\alpha}\right)}{2}.$

На основе разработанного алгоритма создан пакет прикладных программ на языке Delphi. Результаты вычислений представлены в таблице и отражаются графиками, приведенными на рис. 1-4.

Исследовалось влияние вязкоупругих свойств материала пластинки на критические значения скорости флаттера. Результаты вычислений, представленные в таблице, показывают, что решения упругих (A=0) и вязкоупругих (A>0) задач существенно различаются между собой. Например, при увеличении параметра А от нуля до значения 0.1 критическая скорость флаттера уменьшается на 44.7%.

Таблица 1

• 0

Зависимость критической скорости флаттера от физико-механических и геометрических параметров пластинки

Α	α	β	λ_1	λ	V _{кp}
0 0.005 0.01 0.1	0.25	0.05	200	1	750 602 523 415
0.01	0.1 0.4 0.6	0.05	200	1	412 528 563
0.01	0.25	0.1 0.01	200	1	520 525
0.01	0.25	0.05	150 180 220	1	830 616 410
0.01	0.25	0.05	200	1.8 2.2 2.5	552 605 653

Исследование влияния параметра сингулярности α на критическую скорость флаттера показало, что с увеличением α эта скорость возрастает. Например, разница между значениями критической скорости при α =0,1 и α =0,6 составляет 36.7%.

Из приведенной выше таблицы видно, что влияние параметра затухания β ядра наследственности на скорость флаттера пластинки по сравнению с влиянием параметра вязкости A и сингулярности α незначительно, что еще раз подтверждает общеизвестные выводы о том, что экспоненциальное ядро релаксации неспособно описать наследственные свойства материала конструкций.

Изучено влияние параметра вязкости A на изгибающий момент M_x . Расчетные величины представлены на рис. 1. По оси ординат даны безразмерные величины M_x , по оси абсцисс – безразмерная длина пластинки. Значения геометрических и физических констант приняты равными: $\lambda=2$; t=50; $\alpha=0,25$; $\beta=0,05$; V=450 м/с; y=0,5; $\lambda_1=25$. При A=0,1 амплитуда безразмерного изгибающего момента уменьшается.

Влияние геометрических и аэродинамических нелинейностей (ГАН) на изгибающий момент M_x изображены на рис. 2. В начальном

времени влияние ГАН незаметно, а далее разница между линейной и нелинейной теории увеличивается.

Влияние изгибающих моментов M_x по длине пластины при различных моментах времени *t* представлены на рис. 3. Величина M_x при *t*=0,1 достигает максимума в точках x=0,75. С увеличением безразмерного времени *t* максимальное и минимальное значение момента M_x уменьшается.

На рис. 4 представлены графики изменения крутящего момента M_{xy} (при y=0) по длине пластины для моментов времени t=0,1 и t=5. Расчеты получены при следующих значениях геометрических и физических констант: A=0,1; α =0,25; β =0,05; λ =1,8; V=450 м/с; λ_1 =100 и N=5.

Таким образом, в работе исследован нелинейный флаттер вязкоупругой пластины, обтекаемой потоком газа. При помощи метода Бубнова-Галеркина задача сведена к исследованию системы обыкновенных интегро-дифференциальных уравнений (ИДУ). Решение ИДУ находится численным методом, основанным на использовании квадратурных формул. На основе этого метода разработан алгоритм численного решения задачи. Приведены результаты расчетов критической скорости флаттера.

Список использованной литературы:

- Потапов В.Д. Исследование динамической устойчивости вязкоупругих систем с помощью показателей Ляпунова / В.Д. Потапов // Изв. АН. МТТ. — 2000. — № 6. — С. 82—89.
- Potapov V.D. Stability of Viscoelastic Plate in Supersonic Flow Under Random Loading / V.D. Potapov // AIAA Journal. — 1995. — V. 33, No 4. — P. 712—715.
- Beldica C.E. A sensitivity study of viscoelastic, structural and piezo-electric damping for flutter control / C.E. Beldica, H.H. Harry, Y. Sung // Proceedings 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 98-1848, 2. — P. 1304—1314.
- 4. Матяш В.И. Флаттер упруго-вязкой пластинки / В.И. Матяш // Механика полимеров. 1971. № 6. С. 1077—1083.
- Ларионов Г.С. Нелинейный флаттер упруговязкой пластинки / Г.С. Ларионов // Механика твердого тела. — 1974. — № 4. — С. 95—100.
- Бадалов Ф.Б. О некоторых методах решения систем ИДУ, встречающихся в задачах вязкоупругости / Ф.Б. Бадалов, Х. Эшматов, М. Юсупов // ПММ. — 1987. — Т. 51, № 5. — С. 867—871.
- Мовчан А.А. О влиянии аэродинамического демпфирования на сверхзвуковой флаттер обшивки / А.А. Мовчан // Изв. АН СССР, ОТН, Механика и машиностроение. — 1960. — М. — С. 175—177.
- Мовчан А.А. О колебаниях пластинки, движущейся в газе / А.А. Мовчан // ПММ. — 1956. — Т. ХХ, № 2. — С.211—222.

- Мовчан А.А. Об устойчивости панели, движущейся в газе / А.А. Мовчан // ПММ. — 1957. — Т. XXI, № 2. — С.231—243.
- Болотин В.В. Нелинейный флаттер пластин и оболочек / В.В. Болотин // Инж. сб. — 1960. — Т. 28. — С. 55—75.
- Болотин В.В. Неконсервативные задачи теории упругой устойчивости / В.В. Болотин. — М.: Физматгиз, 1961. — 340 с.
- Болотин В.В. Нестационарный флаттер пластин и пологих оболочек в потоке газа / В.В. Болотин // Изв. АН СССР, ОТН, Механика и машиностроение. — 1962. — № 3. — С. 106—113.
- Алгазин С.Д. Численное исследование флаттера пологой оболочки / С.Д. Алгазин, И.А. Кийко // Журн. прикл. механики и техн. физики. — 1999. — Т. 40. № 6. — С. 97—102.
- 14. Ильюшин А.А. Закон плоских сечений в аэродинамике больших сверхзвуковых скоростей / А.А. Ильюшин // ПММ. — 1956. — Т. ХХ, Вып. 6. — С.733—755.
- Григолюк Э.И. Нелинейное деформирование тонкостенных конструкций / Э.И. Григолюк, В.И. Мамай. — М. : Наука, Физматлит, 1997. — 272 с.

In this work is investigated the flutter of viscoelastic plates streamlined by gas current. By Bubnov-Galerkin methods reduced the problems to investigation of system of ordinary Integro-differential equations (IDE). The IDE are solved by numerical method, which based on using of quadrature formula. Critical speeds for plates flutter are defined.

Key words: viscoelastic plates, flutter, integro-differential equations.

Отримано: 26.11.2009