
Серія: Технічні науки. Випуск 22

67

UDC 004.056
DOI: 10.32626/2308-5916.2021-22.67-76

Madjit Karimov*, D-r of Tech. Science, Professor,

Mirkhusan Sagatov**

* State Test Center under the Cabinet of Ministers of
the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan,
**Tashkent State Technical University
named after Islam Karimov, Tashkent, Republic of Uzbekistan

APPLICATION THE AHO-CORASICK ALGORITHM FOR
IMPROVING A INTRUSION DETECTION SYSTEM

One of the main goals of studying pattern matching techniques
is their significant role in real-world applications, such as the intru-
sion detection systems branch. The purpose of the network attack
detection systems NIDS is to protect the infocommunication net-
work from unauthorized access. This article provides an analysis of
the exact match and fuzzy matching methods, and discusses a new
implementation of the classic Aho-Korasik pattern matching algo-
rithm at the hardware level. The proposed approach to the imple-
mentation of the Aho-Korasik algorithm can make it possible to
ensure the efficient use of resources, such as memory and energy.

Key words: NIDS (Network Intrusion Detection System), pre-
cise matching, imprecise matching, FPGA (field-programmable
gate array), algorithm Aho-Corasick.

Introduction. In recent years, there has been rapid growth in both In-
ternet penetration and bandwidth, driven by huge improvements in tele-
communications infrastructure, the proliferation of competitively priced
computers and mobile Internet-capable devices, and the declining cost of
Internet access as a result of increased competition. The number of individu-
als using the Internet has increased by several billion over the past 10 years,
mainly due to the increased use of high quality video communications.

In 2019, Positive Technologies specialists recorded more than 1,500
attacks; this is 19% more than in 2018. In 81% of cyber attacks, the vic-
tims were legal entities. At the end of the year, the five most frequently
attacked industries included government agencies, industry, medicine,
science and education, and the financial industry.

In September 2020, the AVTest Institute detected about 1.1 billion
unique malicious programs, of which 12 million are new malware. In other
words, a new malware was created every 2 seconds.

In 2019, the number of malware infections increased by 38% com-
pared to 2018. In 41% of cases, malware infections were combined with
social engineering techniques.

© Madjit Karimov, Mirkhusan Sagatov, 2021

Математичне та комп’ютерне моделювання

68

The growth in the success of malicious campaigns throughout the

year was facilitated by the continuous modernization of both the malicious

software itself and the delivery methods. First, in 2019, attackers were

good at masking malware. For example, they hid them in files with exten-

sions that are included in the whitelists and therefore are not detected by

antiviruses, used legitimate processes and built-in mechanisms to avoid

detection, signed malware with legitimate certificates, and actively devel-

oped fileless infection techniques. Trend Micro researchers published a

report in September 2019, according to which the number of fileless at-

tacks in the first half of the year increased by 265% compared to the first

half of 2018. At the end of the year, Bitdefender specialists talked about a

new technique for infiltration by miners, ransomware and spyware through

the features of the RDP service. Second, cybercriminals added new ex-

ploits to malware vulnerabilities, including in widely used software. For

example, the notorious WinRAR vulnerability in 2019, which affected half

a billion users, was used both for infections by the JNEC.a ransomware

and in complex targeted attacks. Finally, attackers tried to make the mal-

ware feature rich, which increased its chances of gaining benefit if it be-

came infected. For example, the new Scranos rootkit steals credentials and

billing information, installs adware, and subscribes to YouTube channels.

Network packet inspection is the examination of a packet's payload

for patterns known as signatures, listed in a rule database called a rule set.

Signatures are usually in the form of fixed strings or regular expressions,

or a combination of both. In recent years, regular expressions have become

more commonly used to describe increasingly complex attacks.

The topic of fixed string matching is well understood because of its

importance in many applications such as Internet search engines, parsers,

word processors, and digital libraries. This is important in signature-based

NIDPS because most rules contain at least one fixed string pattern to

match. Although fixed string matching is beyond the scope of this paper, a

brief overview is provided below to give a complete understanding of the

functionality of NIDPS.

Related works. Precise Matching. The string matching problem can

be simply formulated — for two strings T and P of length m and n, respec-

tively, determine if P occurs in T. Naive or brute force search involves

trying to match a pattern using a window size of length n and iterating

over each position in T from left to right, resulting in the worst-case com-

plexity O (mn). Boyer-Moore and KMP are two classic single-string

matching algorithms. Both of these algorithms also use a window of size

n, but they use a skip or shift table to determine where to look next after

each mismatch. The shifts used by the Boyer-Moore algorithm are based

on two rules known as the bad character shift rule and the good suffix shift

Серія: Технічні науки. Випуск 22

69

rule. The first rule eliminates the need to repeat unsuccessful comparisons

with the target character, and the second ensures that the match only

matches target characters already successfully matched. The KMP algo-

rithm similarly uses information derived from partial matches to skip

alignments that are guaranteed not to result in a match. The Boyer-Moore

algorithm was later simplified by Horspool, resulting in an algorithm that

is easier to implement. The Boyer-Moore algorithm has a worst-case

search time of O (m + n) if the pattern does not appear in the text, and

O (mn) if it does. The average seek time is sublinear and improves with

increasing pattern length. KMP is O (m + n) in both the average and worst

case. Baeza-Yates and Gonnett found that the average performance of the

Boyer-Moore-Horspool algorithm improves with increasing pattern length,

and better than KMP for n > 3. These algorithms are not suitable for

matching multiple patterns because the search time increases linearly with

increasing template length, number of patterns.

Imprecise Matching. Dharmapurikar et al. describe a hardware tech-

nique using Bloom filters to detect fixed strings in streaming data. A Bloom

filter is a randomized data structure that is «programmed» with strings using

multiple hash functions and «queried» for a string based on a few bits. The

request may result in a false positive, but never a false negative. (A false

positive is when a match result incorrectly indicates that a match exists,

while a false negative is when a match result incorrectly indicates that a

match does not exist). The main advantage of this method is that it will

probably only require a relatively small amount of memory, even for a very

large set of templates. The disadvantages are that multiple Bloom filters are

required, one for each pattern length found in the rule set, and that all possi-

ble matches must be fully checked for false positives. Song and Lockwood

propose a more efficient data structure, called an extended Bloom filter, in

an architecture that makes the most of FPGA block RAM. Zhou and Wang

propose an FPGA implementation of multi-pattern string matching using

parallel mechanisms based on the Bloom counting filter.

Markatos et al. propose an algorithm based on the use of exclusion

matching. It basically splits patterns into multiple fixed size bit strings and

searches for them without checking if they are in the correct sequence. If

any of the subpatterns do not match, then the entire pattern does not

match. When a matching subpattern is found, the system reverts to a

standard algorithm, such as Boyer-Moore, to validate the complete pattern.

Algorithmic background-The Aho-Corassic and Commenzt-

Walter algorithms. Two well-known multi-pattern matching algorithms

are Aho-Corasick and Commenzt-Walter. The Aho-Corasick algorithm is

an extension of the KMP algorithm for a set of templates.

Математичне та комп’ютерне моделювання

70

This paragraph is devoted to providing a brief explanation of the pat-

tern matching problem. In short, in the problem of the exact set matching

algorithm, the main goal is to find occurrences of all patterns from a given

set P = {p1 ... pk} in the text T [1 ... m]. Let n be the length of all patterns

in the set P. Obviously, the brute-force algorithm is probably the first algo-

rithm one could think of when solving an exact match of a set in

O (n + km) time, applying any linear time an exact match k times e.g.

Knuth-Morris-Pratt algorithm, Boyer-Moore algorithm, etc.). The Aho-

Corasic algorithm (AC for short) is a natural extension of the famous

Knuth-Morris-Pratt algorithm, which is a classic approach to solving a

single pattern matching problem. AC works in O (n + m + z) time, where z

is the number of occurrences of patterns in the text T. AC is based on the

refinement of the keyword tree.

Consider the following set of lines: P = {ATTACK, ASSET, CAT}.

The keyword tree for P is shown in the figure.

Fig. 1. Aho-Corasick — automaton for set of patterns

P = {ATTACK, ASSET, CАТ}

Time complexity of tree construction is O (n). The next step is to convert

the keyword tree to an automaton to support linear time matching. The action

of the automaton is determined by three functions defined for states [8]:

g(s, a) — a goto function: gives the states entered from current state s by

matching text char a, if edge (u, v) is labeled by a, then g(u, v) = v; and

g(0, a) = 0 for each a that does not label an edge out of the root (denoted 0),

f(s) — a failure function: gives the state entered at a mismatch, when

w is the longest proper suffix of L(v) such that w is a prefix of some pat-

tern, f(s) is the node labeled by w,

Серія: Технічні науки. Випуск 22

71

out(s) — an output function: gives the set of patterns recognized

when entering state.

If n is the number of states in the automaton, and nocc is the number

of occurrences of the pattern in the string, then the time complexity of

finding the algorithm is O(n + nocc) when the transitions of the automaton

are stored in the transition table and, O(nlog|Σ| + nocc), when transitions

are stored in a balanced tree [2, 5].

Theorem. Searching for a set of patterns P in text string T[1 ... m]

with an AC automaton takes time O(m + z), where z is the number of pat-

tern occurrences.

A transition table of a FSM automaton contains transitions from each

state for every symbol of a input alphabet, so the size of this transition

table is equal #S · #A (where S is the set of automaton states, A is the in-

put alphabet and #X is a cardinality of set X). The transition table for an

AC automaton contains only two transitions for each state (2·#S). Number

of transitions is not dependant on size of the input alphabet.

Algorithm1. Searching patterns P in text T

Input: string T[1,…,m]

 set of k-patterns P;

output: starting indices of substrings of T

 matching patterns from set P;

 q=0;

 for i=1 to m do

 while g(q, T[i])=0 do q=f(q);

 q=g(q,T[i]);

 if out(q) ≠ 0 then print (i);

The Commentz-Walter algorithm combines the ideas of the Boyer-

Moore and Aho-Corasick algorithms. For a string of length m and maximum

template length lmax, its worst-case time complexity is O(mlmax). In practice,

it is faster than Aho-Corasick only for a small number of search patterns.

Both Aho-Corasick and Commentz-Walter algorithms suffer from

the fact that memory requirements can grow exponentially with the num-

ber of patterns. This degrades the performance of the software as the entire

machine cannot be stored in the cache. A number of solutions have been

proposed for this memory explosion problem, most of which involve the

use of hash tables. The Wu-Manber algorithm is a variant of the Boyer-

Moore algorithm with multiple patterns that considers text in B blocks

instead of individual characters, that is, it is a multi-step algorithm. It uses

three tables: SHIFT, PREFIX and HASH. The SHIFT table stores the shift

or gap values for each of the characters in the block, indexed by hashing

Математичне та комп’ютерне моделювання

72

their value. If a potential match is found, the HASH and PREFIX tables

are accessed to verify the actual match. Navarro and Raffino provide a

detailed description accompanied by examples. The algorithm only re-

quires O(k) memory space, where k is the number of templates, and is very

fast on average. It was previously used by Snort, but has been removed

because its inferior performance makes it vulnerable to DoS attacks. Snort

now uses the standard Aho-Corasick algorithm by default, but it can be

configured to use other versions of the algorithm [3] that trade off memory

versus speed. It also includes a binary tree based algorithm known as SFK

lookup for very low memory systems.

A lot of research has been done to find improved variants of the Aho-

Corasick algorithm, in particular for hardware implementation. The algo-

rithms proposed by Tuck et al. reduce memory consumption through the

use of bitmap nodes and path compression. Bitmaps reduce the number of

state transition pointers, and path compression combines a number of se-

quential states. Tan and Sherwood use bit splitting to split the Aho-

Corasick automaton into eight separate automata, each operating on one

bit of each input character, thereby reducing the maximum number of tran-

sitions from each state from 256 to just 2.

Kennedy et al. proposed an FPGA architecture based on the Aho-

Corasick algorithm, which uses multiple string matching mechanisms op-

erating in parallel.

A well-known FPGA approach to string matching is to treat a string

as a simple regular expression that can be represented by an NFA, which

translates into FPGA logic. The main disadvantage of this method is the

need to reprogram the FPGA when the rowset changes. Moreover, it does

not scale well as recent rulesets generate too much logic.

TCAMs can perform concurrent searches at high speed, but they pre-

sent two problems for matching multiple patterns: (i) TCAM entries are

fixed length, as opposed to string patterns found in NIDS rulesets, and (ii)

TCAMs return the first matching entry, and not all matches. Yu et al. pro-

pose a solution that overcomes these two difficulties. The number of

TCAM lookups is in the order of O(n), where n is the number of charac-

ters entered. Sung et al. [1, 4, 6, 7] present a jump window scheme that

reduces the number of TCAM lookups to O (n / m), where m is the win-

dow size. Although it gives very good matching performance, TCAM suf-

fers from the problems of relatively high cost and energy inefficiency.

Hardware schemes for state machines. Finite machine. A block di-

agram of a state machine that finds character patterns is shown in Figure 3.

The module consists of a character shift register, a state register, and a

look-up table. The state register contains the code of the current state of

the state machine.

Серія: Технічні науки. Випуск 22

73

Fig. 2. Block scheme of finite state machine

The shift register shifts a new character into the look-up table at each
clock cycle. The lookup table determines the next state from the current
state and the input character. It also detects output patterns found, which
tells whether the state machine has found a pattern. Much of the circuit's
latency comes from a look-up table, which can be implemented in FPGA
memory or logic cells.

Aho Corasick Machine. The module that implements the Aho-
Korasik algorithm (shown in Figure 4) is similar to the basic module of the
state machine. The most important extension is the brake light. It is set
when the state machine returns through a failure transition and tells the
shift register not to shift a new character. The conversion table has been
converted to a more complex block. The table is split into two tables: a
transition function and a failure function. The goto function determines the
next state based on the input character and the current state in a situation
where the Aho-Corasick machine matches any pattern. It is implemented
in Addressable Memory (CAM). The number of CAM lines is equal to the
number of goto branches in the keyword tree. The stop memory output
signals whether the next state was executed in the CAM or not.

The failure function finds the next state from the current state when
the input character does not match any pattern. Each state has one transi-
tion of the failure function, so it is easy to implement in memory, the size
of which is proportional to the number of states.

The stop signal activates the next state multiplexer function. If the
CAM finds a matching row, the next state is taken from the CAM pin,
otherwise it is taken from the failure function. The templates function re-
ports from the next status output which templates were found.

Математичне та комп’ютерне моделювання

74

Fig. 3. Block diagram of AC machine

Parallel Aho-Corasick Machine. Taking into account the fact that

the size of the Aho-Corasick jump table is independent of the size of the

input alphabet, it is possible to parallelize and pipe it by taking multiple

characters at each step and multiplying the number of Aho-Corasick Ma-

chine. This increases the size of the input alphabet and changes the num-

ber of states of the machine.

Fig. 4. Block diagram of control unit of AC Machine

Серія: Технічні науки. Випуск 22

75

Each n Aho-Corasick machine takes n input symbols from the shift

register every n clock cycles. Each machine receives symbols in its own

clock cycle, so every n adjacent symbols in the shift register are processed

by one of the machines. The Aho-Corasick automaton is modified to process

n symbols at each step. It can handle n steps of the goto function, but only

one step of the failure function of the underlying Aho-Corasick machine.

The advantage of the parallel version is that machines can share the

resources of an expensive CAM for the transition function and memory for

the failure function. Thus, the memory is pipelined, resulting in a shorter

clock cycle than the basic version of the AhoCorasick machine. The dis-

advantage is that the length of the templates must be divisible by n.

Conclusion. This article proposes a new implementation of the clas-

sic Aho-Corasik pattern matching algorithm at the hardware level. The

presented results show that the Aho-Corasick algorithm provides efficient

use of resources (memory and logical cells) at the expense of lower

throughput. Using this algorithm, the same patterns can be accommodated

as in a smaller FPGA. Further improvements are expected in the area of

efficient hardware implementation of pattern matching algorithms.

References:

1. Bakhodir Y., Nurbek, N., Odiljon Z. Methods for applying of scheme of packet

filtering rules. International Journal of Innovative Technology and Exploring

Engineering. 2019. Vol. 8. Is. 11. P. 1014-1019.

2. Karimovich G. S., Turakulovich K. Z., Ubaydullayevna H. I. Computer's

source based (Pseudo) random number generation. International Conference

on Information Science and Communications Technologies, ICISCT 2017.

Tashkent, 2017. CFP17H74-ART;133832;

3. Sherzod G., Dilmurod A., Nodira M., Husniya A. Construction of schemes,

models and algorithm for detection network attacks in computer networks. In-

ternational Journal of Innovative Technology and Exploring Engineering.

2019. Vol. 8. Is. 12. P. 2234-2241.

4. Karimov M., Tashev K., Yoriqulov M. Problems of increasing efficiency of

NIDS by using implementing methods packet classifications on FPGA. Inter-

national Conference on Information Science and Communications Technolo-

gies, ICISCT 2019. Tashkent, 2019. CFP19H74-ART; 158120.

5. Akhmatovich T. K., Turakulovich K. Z., Tileubayevna A. J. Improvement of a

security enhanced one-time mutual authentication and key agreement scheme.

International Journal of Innovative Technology and Exploring Engineering.

2019. Vol. 8. Is. 12. P. 5031-5036.

6. Karimov M., Gulomov Sh., Yusupov B. Method of constructing packet filtering

rules. International conference on information science and communications tech-

nologies applications, trends and opportunities (ICISCT).Tashkent, 2019.

7. Abdulatteef S. W. An Implementation of Firewall System Using MikroTik Router

OS. Journal of University of Anbar for Pure Science. 2012. Vol. 6 (2). P. 65-69.

Математичне та комп’ютерне моделювання

76

8. Zhang L., Wang Y., Jin R., Gao K. Approaches for a Stand-alone Network Attack

and Defense Platform Using Yersinia Toolkits. International Journal of All Research

Education and Scientific Methods (IJARESM). 2017. Vol. 5. Is. 3. P. 2455-6211.

ЗАСТОСУВАННЯ АЛГОРИТМА АГВ-КОРАСІКА ДЛЯ
ВДОСКОНАЛЕННЯ СИСТЕМА ВИЯВЛЕННЯ ВТОРГНЕНЬ

Одна з основних цілей вивчення методів зіставлення зі зразком —

їх значна роль в реальних додатках, таких як гілка систем виявлення

вторгнень. Метою систем виявлення мережевих атак NIDS є захист

інфокомунікаційної мережі від несанкціонованого доступу. У цій

статті представлений аналіз методів точного і нечіткого зіставлення, а

також обговорюється нова реалізація класичного алгоритму зістав-

лення зі зразком Ахо-Корасіка на апаратному рівні. Пропонований

підхід до реалізації алгоритму Ахо-Корасіка може дозволити забезпе-

чити ефективне використання ресурсів, таких як пам'ять і енергія.

Ключові слова: NIDS, точний збіг, неточне збіг, FPGA, алгоритм

Ахо-Корасік.

Отримано: 12.10.2021

УДК 681.513

DOI: 10.32626/2308-5916.2021-22.76-87

В. М. Мельник, д-р техн. наук, професор,

В. П. Косова,

К. А. Бурсаков

Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського», м. Київ

ОКРЕСЛЕННЯ ГРАНИЧНИХ ТА ФІЗИЧНИХ УМОВ
МАТЕМАТИЧНОЇ МОДЕЛІ МАСООБМІННУ В АПАРАТІ ПІД

ЧАС РОЗДІЛЕННЯ ВОДНО-ОРГАНІЧНИХ СУМІШЕЙ

Авторами розроблена та удосконалена математична мо-

дель, яка описує масообмінну обстановку в апараті під час роз-

ділення водно-органічних сумішей та показує процеси пер-

вапорації, що відбуваються з процесу десорбції компонентів з

мембранного елемента з урахуванням взаємних впливів харак-

теристик процесу на характеристики середовища. Враховано

вплив зовнішніх факторів для температурного розрахунку та

знайдено розв’язок відповідної модельної задачі з використан-

ням рівняння руху для рідини в середині мембрани в умовах

ламінарного руху. Наведені результати розрахунків розподілу

концентрації органічної домішки у суміші та матеріалі мембра-

ни. Досліджено залежність кількості проходів через мембрану

© В. М. Мельник, В. П. Косова, К. А. Бурсаков, 2021

