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IMPROVING THE ACCURACY OF THE NEURAL
NETWORK MODELS INTERPRETATION
OF NONLINEAR DYNAMIC OBJECTS

The paper is devoted to the problem of neural network interpreta-
tion in the tasks of modeling nonlinear dynamic objects. The purpose
of the work is to improve the accuracy of the neural network models
interpretation of nonlinear dynamic objects and to determine the
scope of their effective application. This goal is achieved by applying
analytical models in the form of integral-power series based on mul-
tidimensional weight functions. The scientific novelty of the work
lies in the use of nonlinear dynamic models in the form of integral-
power series based on multidimensional weight functions instead of
linear surrogate models. It allows to improve modeling accuracy.
The practical usefulness of the work is determination of the effective
application area of analytical interpretive models. The practical sig-
nificance of the obtained results lies in the application of the pro-
posed models for the interpretation of neural network models of non-
linear dynamic objects, which allows to increase the accuracy of in-
terpretation models compared to linear surrogate models.

Keywords: interpretation of machine learning models, nonlin-
ear dynamic models, time delay neural networks.

1. Introduction. The development of science and technology makes
it possible to ensure a qualitative increase in the characteristics of modern
devices and processes in various fields of activity. On the other hand, this
continuous process leads to the constant complexity of control objects, and
toughening requirements for their functioning [1].

For successful interaction with such objects (solving problems of
control, management, diagnostics), it is first of all necessary to provide
their adequate mathematical support and effective modeling tools. This is
achieved primarily by increasing the complexity of models [2].

Thus, in the last decade, there has been a significant leap in the com-
puting power of computer technology, combined with the development of
information processing algorithms and access to large amounts of data.
This has resulted in significant progress in machine learning, which has
led to an increase in modeling accuracy and, as a result, the widespread
use of machine learning models in various fields of activity. At the same
time, the accuracy of machine learning models with their ability to auto-
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matically detect, study and obtain useful knowledge from large amounts of
data is achieved by increasing the complexity of the model itself. As a
result, the ability to explain the principles of operation of such a model
decreases and, as a result, the results obtained become quite difficult for
humans to understand, i.e., the interpretability of the model is impaired.

Interpretability is an important property of machine learning models. It
facilitates the processes of controlling and diagnosing object by explaining
why a particular solution was obtained, which helps to improve the model.

In a number of industries where there are increased requirements for
model adequacy, namely, where the model can significantly affect people's
lives, such as medicine, finance, transportation, cybersecurity, interpreta-
bility is not only a desirable property of the model, but also an inherent
requirement for machine learning models, enshrined in law (for example,
the European GDPR regulation [3], which requires the right to explain the
decision made by the model).

2. The research purpose and problem formulation. Not all ma-
chine learning models require interpretation. There is a trade-off between
model interpretability and model complexity. For example, regression
models, shallow decision trees, and k-nearest neighbors models (in the
space of interpretable features) are simple models and are easily perceived
by humans, i.e., interpretable. On the contrary, neural networks and gradi-
ent boosting are models whose working principle is difficult to understand,
so these models require additional interpretation [4].

Of greater scientific and practical interest are the tasks of modeling
complex objects with unknown laws of functioning and unknown struc-
ture, when the use of simple interpretable models does not lead to a satis-
factory result. Such objects are usually considered as a «black box» [2, 3].

As examples of black box objects, we can consider nonlinear dynam-
ic objects with unknown laws of functioning and unknown structure. Due
to the nonlinear dynamic characteristics, object can function in more com-
plex modes that cannot be realized using linear characteristics [2]. Such
objects are characterized by some a priori uncertainty: lack of data about
the objects, the presence of interference and disturbances in the external
environment. Therefore, traditional deterministic methods are not suitable
for modeling such objects.

When modeling such objects, the neural network approach is becom-
ing more widespread. Neural networks have gained popularity due to the
fact that the process of building a model requires only measuring the data
at the input and output of the «black box» and does not require any as-
sumptions about the structure of the object and the internal laws of its
functioning. Therefore, the use of neural networks to describe non-linear
dynamic objects, in particular, those with continuous characteristics, has
recently expanded significantly.
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However, due to the high nonlinearity and complex interactions of a
large number of model parameters, neural networks do not explicitly re-
flect the structure and internal laws of the object's functioning. Therefore,
neural networks are perceived as «black box» models. As a result, a seri-
ous disadvantage of neural network models is that the predictions made by
such a complex model cannot be traced back to the input data and under-
stand why the output data is transformed in a certain way.

Thus, the complex interactions of a large number of parameters in
neural networks are not easy to trace, while disentangling them can pro-
vide insight into the processes reflected in the object and the parameters on
which the model's decisions are based. As a result, models in the form of
neural networks do not provide a clear analytical expression of the rela-
tionship between the input and output of an object. At the same time, it is
convenient to use an analytical model to analyze the properties of black
box objects, which allows to draw clear and unambiguous conclusions
about the functioning of the system.

As a result, when modeling black-box objects, one has to deal with
models whose operating principles are not obvious, and whose features
often do not have a physical meaning, which complicates the interpretation
of models by humans. As a result, the widespread use of neural network
models is significantly constrained in such critical areas as medicine, fi-
nance, and transportation, where there are increased requirements for the
security of modeling results and model credibility.

On the other hand, the situation that has developed in recent years
has stimulated interest in research on the interpretation of black boxes
based on neural networks in order to increase confidence in these models,
analyze the structure and laws of functioning of the objects under study [2,
3]. Therefore, the development of the interpretation of neural network
models of nonlinear dynamic objects remains an urgent task.

The purpose of the work is to improve the accuracy of the neural
network models interpretation of nonlinear dynamic objects and to deter-
mine the scope of their effective application.

3. Literature overview. Today, the greatest efforts of scientists and
practicing engineers are concentrated in the area of machine learning model
interpretation. World-renowned IT companies also see great potential in this
area and create their own tools for interpreting machine learning models:
aix360.readthedocs.io (IBM), aws.amazon.com/sagemaker (Amazon), cap-
tum.ai (Facebook), explainable.ai (Google), interpret.ml (Microsoft), etc.

The analysis of scientific achievements and the above services allows
us to distinguish the following approaches to the interpretation of machine
learning models:

e visualization (2D, 3D graphs, graphs, etc.);
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o textual explanation (models in the form of antecedents: «factor A and
factor B led to prediction Cy);

o numerical estimates (importance of features, coefficients, weights);

o analytical expressions (explicit dependence of an object's output on its
input).

When interpreting neural networks, approaches based on visualization
and evaluation of the importance of features are most often used [3, 4].

Visualization. Methods of interpreting neural networks based on vis-
ualization of decision-making processes for processing non-numerical
data: images and video, sound and speech, text [3] are widely known.

Advantages: visual display of the initial data in the image space, as-
sessment of the quality of the machine learning process of the model.

Disadvantages: lack of numerical estimates of the relationship be-
tween features and their importance, explicit dependence of the object's
output on its input.

Numerical estimates. In the interpretation of neural networks, methods
based on the assessment of the importance of features are often used to explain
individual model predictions. A popular method for assessing the importance
of features is the SHAP (SHapley Additive exPlanations) method [5].

Advantages: assessment of the importance of features, identification
of features that affect the model performance.

Disadvantages: lack of assessment of the functional dependence of
the result on the identified features, the explicit dependence of the output
of the object on its input.

Analytical expressions are used to interpret models much less frequent-
ly, although they have a number of important advantages over other ap-
proaches. Interpretation of models in the form of analytical expressions al-
lows to ensure mathematical reliability: to transparently show the absence of
hidden behavior or logic that affects the behavior of the model [3, 4].

The mathematical support for constructing interpretable analytical
input/output expressions for machine learning models is not fully devel-
oped and is usually reduced to approximating the model in the local do-
main with simpler computationally simple surrogate models, in particular,
linear models [4]. Popular analytical methods for interpreting machine
learning models are LIME (Local Interpretable Model-agnostic Explana-
tions) and linear regression [3], which build surrogate models by locally
approximating the original model to a linear one.

Among the machine learning models, it is important to distinguish
neural network models. The relevance of the task of interpreting neural
networks using analytical expressions is increasing due to the fact that
neural networks capable of carrying reliable information about the struc-
ture and functions of the control object are increasingly used to model
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complex objects and processes of the world around us (technical and bio-
logical control objects, production, control and automation facilities).
Nevertheless, neural network models of such control systems have not
been sufficiently studied, and methods for interpreting these models are
much less represented in the literature and are usually reduced to lineariza-
tion [4] or polynomial approximation [3]. At the same time, the interpret-
ing models usually take the form of linear dynamic or nonlinear static de-
pendencies and do not reflect all the properties of the object.

This problem can be solved if nonlinear dynamic models, such as in-
tegral-power series based on multidimensional weight functions, are used
as interpretation models [6]. The main advantages of these models are the
simultaneous consideration of nonlinear and dynamic properties of the
object, which ensures an increase in the accuracy of the interpretation of
neural network models of nonlinear dynamic objects.

As a result of an analytical review of the current state of the problem of
interpreting neural network models, the paper proposes an approach to
building interpretive models based on an analytical expression in the form of
integral-power series based on multidimensional weight functions. The use
of this approach allows to simultaneously increase the accuracy and reduce
the computational burden of interpretation of complex research objects.

In this work, the method of interpreting models of complex objects
with nonlinear and dynamic properties of the "black box" type in the form
of neural networks was further developed by using the analytical expres-
sion of the input/output relationship of the model in the form of integral-
power series based on multidimensional weight functions.

4. Main part.

4.1. Simulation model of the test object. Using the example of a test
object, we investigated the effectiveness of interpreting non-network mod-
els. The simulation model of the test object with a first-order dynamic
block and a nonlinear feedback block [7] is shown in Fig. 1.

The polynomial function f(y) = y? is considered as a nonlinear func-
tion f(y) in the feedback block. The simulation model is studied using test
signals with different amplitudes: pulse, step, linear, and harmonic.

©) X "

145(y)

Fig. 1. Simulation model of a test nonlinear dynamic object
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In Fig. 2 shows the transient characteristics yos(t), Yos(t), Yoo(t) of the
test object when the input is a step signal x(t) = a®(t), a = 0.3, 0.6, 0.9.
The figure demonstrates test object’s nonlinear and dynamic properties.
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Fig. 2. Transient characteristics yos(t), yos(t), yoo(t)
of the test object under the action of a step signal at the input

4.2. Object model based on a neural network with a time delay.
There are several neural network structures for modeling nonlinear dy-
namics: Dynamic Neuro-SM, Wiener-type DNNSs, and time-delay neural
networks (TDNNSs) [8].

Among these types of neural network models, TDNNs are the most
general structure consisting of several layers with direct signal propagation
[6-8]. Such models are able to learn from the input-output data of nonline-
ar dynamic objects and have excellent convergence properties [7], which
are advantages over the aforementioned Dynamic Neuro-SM and Wiener-
type DNN methods. Therefore, TDNN models are an effective tool for
modeling nonlinear dynamic objects with continuous characteristics.

In this paper, a time-delay neural network is used to build an object’s
model. Most often, in practice, a three-layer TDNN structure is used with
layers: input, hidden, and output.

The signal y(t,) of the TDNN model is described by the expression:

K M
y(ty) =1+ Y WS {bi +ZWi,jX(tn—j)J: 1)

i=1 j=1
where M is the memory length of the object model, K is the number of
neurons of the received layer with a nonlinear activation function, bo, b; is
the bias of the neurons of the output and hidden layers, respectively; So, Si
are the activation functions of the neurons of the output and input layers,
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respectively; wi, w; j are the weighting coefficients of the neurons of the
output and hidden layers, respectively.

A TDNN model can be trained to behave dynamically with the in-
corporation of nonlinear characteristics [7] on the input-output data.

The training data set is formed from the results of the input-output
experiment - a set of vectors {x(t), y(t)} for each type of input signal.

Based on the results of training the neural network model, the follow-
ing values of M, K, wi, wi; and bo, b;, are found, which ensure sufficient
modeling accuracy. However, the values of wi, wij and b, bi have no phys-
ical meaning and model (1) is difficult to interpret.

Using the interpretation approaches discussed above, in the next sec-
tion, we build interpretive models for (1).

4.3. Building interpretive models.

4.3.1. Graphical interpretation. This interpretation approach allows
visualizing the neural network training process and training results in the
following forms:

e scalar functions in the context of time c(t) = f(j(t)), where y(t) is the
estimate of the output signal of the object. The loss function or cost
function and the accuracy of the neural network are most often used as
c(t);

e images formed on data in 2D space c(a, b) = f(a, b). As c, we can use
the network weights w; j;

o model graph c(bi, w; j) = {bi, w; j};

e histogram of changes in the distribution of data in layers over time
c(a) ={a}, i =1, n, data dimension.

To demonstrate the graphical interpretation of the neural network
model of the test object, we use histograms of the time distribution of data
in the input (Fig. 3) and hidden (Fig. 4) layers.

Graphical interpretive models can be used to establish qualitative in-
dicators of the significance and relatedness of the properties of a test ob-
ject. However, these models do not provide information on how certain
properties affect the model's predictions.

4.3.2. Numerical estimates of the model. This approach to interpreta-
tion allows us to evaluate the process of neural network training and the
results of training in the following forms:

e calculation and visualization of the estimates of the significance and
connectivity of the features;

o textual explanation (models in the form of anti-cases: «if the feature x;
changes/increases, the probability of a decrease/increase in the predic-
tion y(x) increases»).
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Fig. 3. Histogram of data distribution in
time in the input layer
To analyze and interpret the neural network model of the test object,
the SHAP method builds a graph of the importance of the features used in
the model (Fig. 5).

Fig. 4. Histogram of data distribution
over time in a hidden layer
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Fig. 5. Graph of importance of test model features
Thus, important conclusions can be drawn from this graph and their

adequacy can be checked:
o almost all the features are interrelated;
o the features x; with lower ordinal numbers (located closer to the begin-

ning of the vector x(t)) have greater significance (influence on the out-

put value y(t)).

4.3.3. Analytical model. For a wide class of nonlinear dynamic ob-
jects with continuous characteristics, the relationship between the input
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x(t) and output y(t) signals can be written in the form of an integral-power
series based on multidimensional weight functions [6, 7]. Thus, for an
object with one input and one output in the time domain, the model takes
the following form:

o t ot n
VOEDM P ITACERSES] § FICALER @

n=0p0 0 i=1
where x(t) and y(t) are the input and output signals of the object;
Wn(71, ..., ) are multidimensional weight functions of the n" order

(n=1,2, 3, ...); wo is the free term of the series; t is the current time.

To interpret the neural network model of a test object in the form of
an analytical expression of an integral-power series, expressions that es-
tablish an analytical relationship between these models are used [7]. These
expressions are used to determine the multidimensional weight functions
of the first wi(z1) and second wa(z1, 72) orders.

Fig. 6 shows the multidimensional weighting function of the first or-
der wi(z) and the diagonal section of the multidimensional weighting func-
tion of the second order wx(z, 7).
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Fig. 6. Multivariate weighting function of the first-order test object wi(z), diagonal
intersection of the second-order multivariate weighting function wa(z, 7) and
interpretive models of the first y1(t) and second y2(t) order

Based on the determined multidimensional weighting functions, the
neural network interpretation model is built in an analytical form accord-
ing to expression (2). The resulting interpretation model transparently
demonstrates the structure of the test object and the functional relationship
of the features that affect its behavior. To determine the accuracy of the
built model, Fig. 6 also shows a linear interpretation model built by the
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LIME method. The interpretation model built by expression (2) demon-
strates an accuracy of 10-12% higher than the linear model when using test
input signals with amplitudes a € [0.6, 0.9].

5. Conclusion. The paper deals with applied aspects of improving
the accuracy of interpreting neural network models of nonlinear dynamic
objects. As a result of an analytical review of approaches to the interpreta-
tion of neural networks: visualization, numerical estimates of features and
analytical expressions, the areas of effective application of analytical in-
terpretation models are identified. Thus, approaches to the interpretation of
machine learning models based on visualization and numerical estimates
of features do not allow the construction of an analytical expression of the
input/output relationship of the control object. Therefore, when modeling
complex «black box» objects with nonlinear and dynamic properties, it is
advisable to use interpretive analytical models in the form of integral-
power series based on multidimensional weight functions to ensure the
absence of hidden behavior or logic that affects the behavior of the model.

On the example of a test nonlinear dynamic object, a model in the
form of a neural network with time delays is constructed. For the obtained
model, an interpretive model in the form of integral-power series based on
multidimensional weight functions is constructed, which allows simulta-
neously increasing the modeling accuracy by 10-12% compared to linear
interpretive models and reducing the computational burden of interpreting
complex research objects compared to neural networks with time delays.
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MNIABMLLEHHA TOYHOCTI IHTVEPI'IPETALI,I'I'
HEUPOMEPEXEBUX MOOENEW HENIHIMHUX
AOWHAMIYHUX OB'EKTIB

PoGora mpucBsiueHa npobeMi iHTepIperanii HeHPOHHNUX MEpeX B 3a/1a-
Yax MOJICITIOBAHHS HENIHIWHUX TUHAMIYHUX 00'€kTiB. MeTor poOoTH € mij-
BUIICHHS TOYHOCTI iHTeprperauii HelpoMepexeBUX Mojeieil HeNiHIHHIX
JMHAMIYHUX 00’€KTIB Ta BU3HAUCHHS cepy iX eh)eKTHBHOIO 3aCTOCYBaHHSI.

B pesynpTari aHANITUYHOTO OTJBIIY HiAXOAIB A0 iHTepHpeTamii Heil-
POHHHX MepexX: Bi3yalli3allis, YACJIOB] OIIHKM O3HAaK Ta aHAJITUYHI BHpa-
31, — BU3HAYCHO chepH eeKTUBHOTO 3aCTOCYBAaHHS aHATITUYHHX IHTEPII-
perauiitaux Moneneil. Tak, miaxomu 1o iHTepHpeTaLii MoJeNei MallnHHO-
O HaBYAHHS Ha OCHOBI Bi3yai3allil Ta YUCIIOBI OIIHKA O3HAK HE J03BO-
JSFOTH 30y{yBaTH aHAIITHYHOTO BUPa3y 3aJISKHOCTI «BXiJl/BUXiT» 00'€KTy
KOHTpomto. ToMy, NpU MOJEIIOBaHHI CKJIATHHUX OO'€KTIB THIY «4OpHa
CKPHHS» 3 HEMHINHUMH 1 IUHAMIYHUMH BIACTHBOCTSIMH IS 3a0e3MCUCH-
HS MiABUIIEHUX BUMOT 10 O€3MeKH pe3ybTaTiB MOAETIOBaHHS (U1 mepe-
KOHAHOCT] y BiICYTHOCTI NMPHUXOBAHOI MOBEMIHKM YH JIOTIKH, SKi BILIMBA-
IOTh Ha TOBENIHKY MOJEINi) AOIIFHO BUKOPHCTOBYBATH IHTEPIPETAIliiHI
aHANITHYHI MOJIEIIl Y BUIIIAI 1HTETPO-CTYIIEHEBUX PSIiB Ha OCHOBI Oara-
TOBHUMIPHHX BaroBUX (DYHKITIH.

Ha npukiiazi TeCTOBOro HEMHIMHOTO JMHAMIYHOTO 00'€KTYy 30yTI0BaHO
MOJIeNIb Y BWIJISIAI HEHpOHHOI Mepexki 3 4YacoBUMH 3aTpUMKamu. [l
OTpUMaHOI HeflpoMepexeBoi MoJeli 30yI0BaHO IHTEePIpETALliiiHy MO/
Y BHUIJISZII 1HTErPO-CTYTIEHEBHX PAIB HA OCHOBI OaraTOBHUMipHHX BaroBUX
¢dhyHKIiH, sKa 103BOJsAE 3a0€3MeYUTH OJHOYACHO MiABHIICHHS TOYHOCTI
MozemoBaHHS Ha 10-12% y mopiBHAHHI 3 TiHIHAMY IHTEpIIpeTAliHHIMEI
MOZENSMH Ta 3MEHIICHHS OOYHCIIIOBAIBHOTO HABAaHTaKCHHS 1HTEpIIpeTa-
iT CKJIaAHUX 00'€KTIB JTOCHI/PKEHHS Y MIOPIBHIHHI 3 HEHPOHHUMH MepexKa-
MH 3 YaCOBHMH 3aTPHMKaMHU.

KunrodoBi cioBa: inmepnpemayis mooeneii Mawiunno2o Haguanus, He-
JIHIUHT OUHAMIYHI MOOeL, HelPOHHI MepediCi 3 Yaco8UMU 3AMPUMKAMU.

Otpumano: 26.10.2023
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