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ON USING GSSM IN POWER SYSTEMS
DYNAMICS' SIMULATION

A broad spectrum of aspects related to the feasibility, principles,
and implementation of the generalized state-space model (GSSM) as
a mathematical modeling technique for energy systems simulation
has been considered. This paper reviews the use of GSSM to address
the challenges of adequate modeling of dynamics of modern power
systems’ dynamics, which are characterized by their hybrid nature,
complex switching modes, and nonlinear interactions. The versatility
of GSSM is analyzed in comparison to traditional approaches, par-
ticularly its capability to integrate continuous and discrete system
dynamics into a unified advanced framework. Additionally, the
model's ability to capture both linear and nonlinear regimes, its com-
patibility with contemporary computational tools, and its application
across various power systems are discussed in detail. The fundamen-
tals, analytical and numerical considerations of differential-algebraic
equations (DAEs) are also examined. The effectiveness of GSSM is
demonstrated through a case study involving simulation of a power
supply control device dynamics. Computer modeling experiments
highlight the advantages of GSSM over traditional methods in terms
of accuracy, computational efficiency, and scalability. At the same
time, they identify areas where further advancements and improve-
ments are necessary.

Keywords: power systems, generalized state-space model, differ-
ential-algebraic equations, mathematical modelling, system dynamics.

Introduction. The complexity of modern power systems, including
renewable energy generation, motor drives, and advanced power electron-
ics, demands robust and efficient modeling techniques to analyze their
dynamics. These systems often exhibit intricate transient responses, non-
linear interactions, and hybrid dynamics that challenge traditional simula-
tion methods. Adequate modeling is essential for optimizing performance,
diagnosing faults, and enabling real-time control of these systems [1, 2].

The Generalized State-Space Model (GSSM) has emerged as a powerful
tool to address these challenges [3]. Unlike conventional state-space ap-
proaches, such as averaged models or linear approximations, GSSM provides
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a unified framework that integrates both continuous and discrete dynamics [4].
This capability is crucial for representing switching dynamics and nonlinear
phenomena in systems like pulse-width modulated (PWM) converters, reso-
nant inverters, and grid-tied renewable energy systems. Its adaptability makes
it a preferred choice for simulating power systems’ circuits characterized by
rapid state transitions and hybrid operating modes [5].

GSSM distinguishes itself with the following key features:

unified framework: the model combines differential equations for dy-
namic elements (e.g., transformers, motors, and controllers) with alge-
braic constraints representing network equations which enables the ac-
curate representation of both transient and steady-state dynamics [6];
integrating continuous-time dynamics (managed by differential equa-
tions) with discrete events (modeled as state jumps or resets), enabling
the modeling of systems with switching actions, such as pulse-width
modulation (PWM) converters [6, 7];

handling nonlinearities inherent in power circuits by providing state-
dependent switching, which makes it suitable for applications like res-
onant inverters and soft-switching converters [7];

compatibility with modern computational tools: GSSM integrates
seamlessly with advanced platforms like MATLAB/Simulink, leverag-
ing their computational capabilities for efficient simulation of large-
scale systems [7];

time-varying and piecewise dynamics: the model is particularly effective
for systems exhibiting piecewise linearity, as it combines time-varying pa-
rameters and mode-dependent dynamics into a cohesive framework [8];
high fidelity: by accommodating discontinuities and nonlinearities,
GSSM surpasses traditional models in capturing the detailed dynamics
of modern power systems [9].

Some of the GSSM applications in power systems are as follows:

DC-DC converters- to buck, boost, and buck-boost converters, provid-
ing insights into their transient and steady-state dynamics under vary-
ing loads and control schemes [2];

grid-connected inverters — to support the analysis of grid synchroniza-
tion and fault detection in renewable energy systems [15,17];
soft-switching converters — to capture zero-voltage or zero-current
switching conditions, which are challenging for traditional state-space
approaches [2, 15].

Recent findings have demonstrated GSSM's versatility in several

domains:

DC-DC converter analysis: GSSM has shown enhanced accuracy in
predicting transient responses compared to classical methods [5];
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e grid-connected inverters: the model facilitates precise control and fault
detection, critical for the stability of renewable energy systems [6, 7];

e power factor correction circuits; GSSM has been applied successfully
to improve energy efficiency and address power quality challenges [5].

Comparing to the recent popular data-driven methods such as Artificial
Neural Networks (ANNs), GSSM retains a significant edge due to its deter-
ministic foundation and compatibility with engineering principles. Unlike
ANN-based models, which often rely on large datasets, GSSM provides trans-
parent insights into system dynamics and ensures adherence to physical laws.
However, as power systems grow increasingly complex, ongoing advance-
ments in adaptive algorithms and parallel processing are expected to further
enhance GSSM’s scalability and performance [9]. Thus, GSSM ability to rep-
resent nonlinear, hybrid, and time-varying dynamics with high fidelity makes
it still actual tool for advancing energy system modeling [10, 11].

GSSM application for power systems’ modelling. The power sys-
tems’ dynamics is described by a set of nonlinear ordinary differential
equations and a set of differential-algebraic equations (DAES): as [2]:

dx/dt=f(x,V),
1(x,V)=Y-V, Q)
where x is the state vector representing dynamic variables, f is a nonlinear
function characterizing the system dynamics, V represents nodal voltages,
Y is the nodal admittance matrix, | is the injected current vector.

The integration of these equations provides an accurate depiction of
both the transient and steady-state responses of the power systems. These
equations encapsulate the interaction between the electrical network and
dynamic system elements, such as transformers, synchronous machines,
and power electronic converters. Specifically, the differential equations
model the time-dependent dynamics of the system components, while the
algebraic equations enforce network constraints and capture the intercon-
nection of elements through nodal admittance and current injections.

The differential equations represent the system elements’ dynamics
(transformers, induction motors, synchronous machines and their control-
lers, power electronics, etc.) while the algebraic equations represent the net-
work equations and the connection of the external elements to the network.

The solution methodology for addressing differential and algebraic
equations can be categorized into two main strategies: alternating and sim-
ultaneous approaches [12]. The alternating scheme operates by separately
solving the systems of ordinary differential equations (ODESs) and algebra-
ic equations. It relies on foundational theories, including ODE solution
methodologies, algebraic equation-solving techniques, and state-space
modeling principles [11, 12]. Conversely, the simultaneous scheme directly
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addresses the coupled system of differential-algebraic equations (DAES),
leveraging the theoretical frameworks of DAE solution methods and the
generalized state-space modeling approach [13].

The methodologies for solving the given equations are classified in-
to two strategies: alternating schemes and simultaneous schemes. Alter-
nating schemes solve differential and algebraic equations independently,
leveraging traditional theories such as state-space modeling and iterative
algebraic techniques [14]. On the other hand, simultaneous schemes
tackle the coupled system of DAEs directly, utilizing modern approaches
like the generalized state-space model and advanced numerical solvers
for DAEs [15, 16].

Recent advancements in computational techniques, including adap-
tive solvers and hybrid symbolic-numeric methods, have significantly im-
proved the efficiency and accuracy of these solution schemes. These inno-
vations are pivotal for analyzing increasingly complex systems, such as
hybrid renewable energy networks and large-scale power grids [15, 17].

GSSM description. GSSM comprises a system of differential and/or
algebraic equations, which for linear time-invariant dynamic systems
are [18-20]:

E x(t) = Ax(t) + Bu(t), @)
y(t) =C x(t) + Du(t),
where X is the state vector, u is the input vector, y is the output vector, E,
A, B, C, D are constant matrices of appropriate dimensions.
If E is non-singular, the system (2) can be represented as:
x(t) = ETAX(t)+ E1Bu(t),
y(t) =Cx(t)+ Du(t),
which is the widely used state-space representation.

Similarly, if E=1 (where | is the identity matrix) the system (2) is
the regular state-space model:

x(t) = Ax(t) + Buf(t), 4
y(t) =C x(t) + Du(t).

Thus, the GSSM (2) describes a broader general class of dynamic
systems than the regular GSSM (4). Normally, power systems are nonline-
ar time-varying circuits. According to [21] GSSM method is the most ap-
propriate for computer simulation of nonlinear time-varying systems. The
dynamic response of nonlinear time-varying systems is generally repre-
sented by a set of differential equations that model the time-dependent
changes in the systems components, such as capacitors and inductors,
alongside algebraic equations that capture the relationships imposed by
network constraints, such as Kirchhoff's laws [22]:
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F (X x,u,t) =0,
c _ (5)
(y, x,u,t) =0,
where X is the state vector, u is the input vector, y is the output vector, F, G
are nonlinear vector functions.

However, the proposed approach is complex due to the fact that
model (5) is overly intricate, making it impractical for most analysis, syn-
thesis, or optimization tasks. The conventional state-space model of non-
linear time-varying systems is represented by the following equations’ set:

x=F(x,u,t),
_ (6)
y=G(x,t).

The advantage of this approach lies in the well-established theory of
mathematical and computational modeling of electrical circuits using the
state-space method. However, the challenge related to model (6) is that it
requires separate, element-by-element calculations for the nonlinear func-
tion increments of GG, which complicates the process.

The canonical form of the generalized state-space model for nonline-
ar time-varying circuits is outlined below [23]:

Ex=A(xt)+Bu,
- ()
y=Cx,

where B, C, E are constant matrixes. This form is utilized for power sys-
tems, which are typically challenging to simulate due to the presence of
algebraic equations and complex nonlinearities. The system of nonlinear
differential-algebraic equations (DAEs) must be solved. Unlike explicit
ordinary differential equations, integrating DAEs can present significant
challenges [24]. Constraints define a manifold within which the solutions
must reside, and the initial values must be selected to ensure they satisfy
these constraints. Additionally, the numerical solution must remain suffi-
ciently close to the manifold to avoid significant deviation, ensuring that
the system’s dynamics remains valid throughout the integration process.

DAEs essentials. DAEs are a class of equations that combine differ-
ential equations with algebraic constraints, making them essential for
modeling systems with dynamic and static components. Unlike ordinary
differential equations (ODEs), DAEs incorporate relationships that may
not involve derivatives, leading to structural complexities in analysis and
solution methods ]25]. DAEs are implicitly defined ODEs that are inher-
ently singular in nature [26]:

F(x', x,t)=0, 8
where the partial Jacobian 0 F /dx" identically singular for all values of
its arguments. Depending on the area of application, DAEs are also called
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implicit, descriptor or singular [25, 26]. If 0F/ox" were nonsingular,

equation (8) could, at least theoretically, be solved explicitly for x', at
least theoretically, resulting in a standard ODE. In essence, DAESs can be
viewed as a form of ODEs; however, they are characterized by the fact
that they cannot be explicitly solved for x’ [27]. The presence of algebraic
constraints in F differentiates DAEs from ODEs. A fundamental character-
istic of DAEs is their differentiation index, which quantifies the number of
times the equations need to be differentiated to reformulate them as a sys-
tem of ODEs. Solving higher-index DAEs is particularly challenging due
to numerical instabilities and the risk of inconsistent initial conditions,
making their analysis and computation more complex [5]. DAES) are ex-
tensively utilized in engineering and scientific domains to model systems
with inherent physical constraints or interdependencies, particularly in
power systems to model electrical circuits and power grids governed by
Kirchhoff's laws. These equations account for both dynamics, such as in-
ductive and capacitive interactions, and algebraic constraints, such as cur-
rent and voltage conservation, enabling accurate simulation of complex
networks. Such models are essential for stability analysis, fault detection,
and optimization of modern energy systems [28].

Analytical consideration. To illustrate the unique characteristics of
DAEs, consider the following simple example [29]:

Xy =Xy, 9)
X, =t+a(t) Xs, (10)
X3 =Xg+1, (11)

where «(t) is a nonzero coefficient.
The solution of the given equations; system is represented as follows:
1+a'(t)(-1+ce) +ca(t)e!
X= t+a(t)(-1+ce) , (12)
~1+ce'

where c is an arbitrary constant.
The following case highlights several key distinctions between DAEs

and ODEs [29, 30]:

e solution x of (12) can depend on derivatives of the defining equation F
(notice aterm «'(t) that appears in the solution);

e not all initial conditions result in smooth solutions, the initial condi-
tions that provide smooth solutions are referred to as «consistent initial
conditionsy;
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e in addition, some hidden constraints are expected, solution of (12) sat-
isfy not only the constraint (10) but also the following constraint:

a'(t) Xz +a(t)(@+x3)—x, =0;

o the best possible outcome is that the solution lies on a smooth mani-
fold, known as the «solution manifold». This manifold is parameter-
ized by t, ¢, as shown in the example above.

As previously mentioned, DAEs are singular equations, and their
singularity is quantified by a nonnegative integer known as the «in-
dex». The concept of the index enables the classification of DAEs
based on their solution dynamics. Several definitions of the index ex-
ist, including global index, geometrical index, perturbation index, dif-
ferential index, and tractability index, which are consistent for simple
systems (e.g., linear DAEs with specific assumptions). However, these
indices can vary for more complex systems, such as nonlinear DAEs.
Notably, ODEs have an index of zero, as they represent the simplest
form of differential equations.

One of the index definitions is the number of times a DAE must be
differentiated in order to transform it into an explicit ODE involving all
state variables. This is referred to as the «differentiation index». It quan-
tifies the complexity of the system by measuring the number of differen-
tiations required to reduce a DAE to a simpler form comparable to an
ODE [31].

Numerical consideration. DAEs of higher indices (greater than 1)
are ill-posed, meaning that small perturbations in the initial conditions
can lead to large, unpredictable changes in the solution [25, 27, 29]. As a
result, classical numerical methods are not universally applicable to all
DAEs. index-1 DAEs, however, are the most widely studied, and meth-
ods like backward differentiation formulas (BDF), implicit Runge-Kutta
(IRK), and various extrapolation techniques are effective for solving
them. Common solvers for index-1 DAEs include DASSL, DASPK,
LSODI, RADAUS5, and CHORAL. For DAEs with indices 2 or higher,
classical methods typically only work for specific structured systems,
such as Hessenberg systems. There is no general solver for index-2
DAEs, though specialized methods exist for certain applications, such as
constrained mechanics and electrical circuits.

Computer experiment. In the computer experiment, a Power Supply
Control Device (PSCD) was simulated. This type of devices are used to
initiate inductive motors in low power supply networks. Figure 1 illus-
trates the electrical schematic, while Figure 2 shows the equivalent circuit
diagram for a single phase of the PSCD.

11



MaTtemaTtunyHe Ta KOMI'l'}OTepHe MoAentoBaHHA

12

Fig. 2. Equivalent diagram of one phase of PSCD

PSCD dynamics can be simulated by a set of nonlinear ODEs and a
set of nonlinear algebraic equation as follows:

W1 =U—-Ryi;—Uc —R3(iy —i3),
Y3 == (R, +Ry)i,,

\Pé=UC—R3i3—Rm(i3—i4)+RK3(il_i3), (13)
W, =R, (i3 -1~ (R + Ry +R, iy,

e ==y -is)

(Ly+Lg) i+ Myp iy + Mgzl + My, iy =Wy,
Myig+(Ly+ Lo+ L)l +Mygig+ My, i, =,

Map iy + Mgy +(Lg+Lyg)iz+ Mgy iy = W3, (14)
My ip + Myl +Mygig+(Ly+Loa+L,)i, =Yy,

u, =—(R, +Ry)iy,
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where ¥ ... ¥ are the PSCD winding fluxes; iz ... is are the winding currents;
u, Uy, Uc are the input, output and capacitor voltages correspondingly; R ... Ra,
R, are active resistances of transformer windings and load; R, R, R, are
correspondingly resistances of controlled switches; C is the capacitor capacity;
2

W+
L, is the load inductance; L; :R—’, j =14 are the of transformer windings’

]

self-inductances; Lo:... La are the transformer windings’ leakage inductances;
W, - W —

M;; = % i, j=1,4 are the transformer windings’ common inductances;

y2
Wi ... W, are the winds” number; R, is the magnetizing resistance, that is non-
linear function of the transformer windings ampere turns’ sum.

Through appropriate transformations of equations (13) and (14), we
can derive the generalized state-space model for the PSCD as follows.

E x=Ax+Bu,
(15)
y=GCx,
where
i,
iy
x=l3 |, y=u,,
iy
LUc |
L+ Lo M, Mis My, 0]
My Ly+lo+Ll, My My, 0
E=| My M3, Ly +Lys M3, 0],
| 0 0 0 0 1]
__(Rl + RK3) 0 R/(3 0 -1
0 _(R” +R2) 0 0 0
A= k3 0 _(R3 + Rm _RK3) _Rm 1 ’
0 0 R, —(Rm+RK3+R4+Rp) 0
1 0 L 0 0
L C C _
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10000 [0 0 0 0 0]
0000O00O 0 -(R,+R,) 0 0 0
B=/0 0 0 0 0,C,=|0 0 000
000000 0 0 000
0000O00O 0 0 000

The following PSCD dynamics was simulated during the computer
experiment:

e capacitor branch is connected and inductance branch is switching-off:
Rx; =0, Res = oo, R, is regulated;
e inductance branch is connected and the capacitor branch is switching-
off: Rys = 0, Res = 0, Ry is regulated;
¢ both branches are switching-on in the resonant mode: Rs; = 0, Res = 0,
Ry, = o0.
Figure 3 illustrates the PSCD dynamics for the following case: R =0,
R«s = o0 and the gate turn-off thyristors R,, are pulse-position modulated.
While the Fig. 4 highlights the PSCD dynamics of MDPR for the follow-
ing case: Ry = 0, Ryy = o0 and the gate turn-off thyristors R,, are pulse-
width modulated.
The PSCD parameters were as follows:
wi = 1300; wz = 52; ws =wy = 130; C=79-10%F; Ry = 3.397 Q;
R2=0.0492 O; R3=R4=0.3394 O; R, =043 Q; R, = 0.5 Q; R, = 14300 Q;
Lo/ =0.028 H; Lo = 3.8:10 5 H; Los= Los = 0.0029 H; L, = 0.0013 H.
g big, B
1000 - --

-1000
0

ir,d 20

u,.B 400

H H H ! H ! H
0 0.01 0.0z 0.03 0.04 0.0s 0.06 0.o7 0.0

Fig. 3. PSCD dynamics: pulse-position modulated control
14
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lig, iy, B
1000 - - -

0 0.01 0.0z 0.03 0.04 0.0s 0.08 0.o? n.os 0.0g 01
I

H H H H H H H
0 0.01 0.0z 0.03 0.04 0.05 0.08 0.07 0.08 0.09 0.1

14,,B 400

400 1 1 1 1 1 1 1 1 1
] 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09 0.1
t.o.

Fig. 4. PSCD dynamics: pulse-width modulated control

The given computer experiments showed that the application of the
GSSM for power systems’ dynamics simulation significantly streamlines
the modeling process. It achieves this by reducing the number of required
modeling equations (e.g., from 10 to 6 for the given case) and employing a
unified algorithm to solve the resulting set of differential-algebraic equa-
tions (DAEs). In contrast, traditional methods necessitate two separate
algorithms: one for solving ordinary differential equations (ODEs) and
another for algebraic equations. This consolidation simplifies the computa-
tional workflow, enhances efficiency, and reduces the complexity of dy-
namic simulations.

Conclusions. This study focused on the simulation of power sys-
tems’ dynamics using the GSSM, assessing its potential as a tool for mod-
ern power system modeling. The GSSM approach demonstrated several
key benefits over traditional methods, including almost two-times reduc-
tion in the number of modeling equations and the ability to use a single
algorithm for solving differential-algebraic equations (DAEs), while con-
ventional methods require separate algorithms for ordinary differential
equations (ODEs) and algebraic equations, complicating the computational
process. The given results can confirm the feasibility of the GSSM ap-
proach for power systems’ dynamics simulation, and assess GSSM as a
promising approach for addressing the challenges of modern power sys-
tems characterized by hybrid dynamics, nonlinear interactions, and com-
plex switching operations, particularly:
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e within simplifying the modeling process and reducing computational
complexity by consolidating continuous and discrete dynamics into a
unified framework;

e within employing a unified algorithm for DAE solving, which elimi-
nates the need for disparate computational strategies, making the mod-
eling process more efficient and scalable;

o within identifying critical challenges that need to be addressed to en-
hance the applicability of GSSM.

At the same time, further research is required to address existing limita-
tions and enhance its practicality. This includes the development of efficient
and stable numerical algorithms tailored for solving differential-algebraic
equations (DAES) that arise in such simulations. Additionally, the creation of
intelligent software routines capable of automating the DAE-solving process is
essential to enhance usability and adaptability. Furthermore, advancing meth-
ods for the automated generation of dynamic state equations within the GSSM
framework is crucial for reducing manual intervention and improving scalabil-
ity. Addressing these issues can significantly enhance the efficiency and ap-
plicability of the GSSM approach in complex power systems’ simulations.
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NPO 3ACTOCYBAHHA METOAY GSSM
Y MOAENOBAHHI AUHAMIKA
EHEPTETU4YHUX CUCTEM

Po3rnsiHyTO IIMPOKMI CIEKTp AacHeKTiB, MOB'A3aHMX 3 JOLLIBHICTIO,
NPUHIOUIIAMA Ta peall3allielo y3arajdbHeHOI MoJeni IpOCTOpPY CTaHIiB
(GSSM) stk MaTeMaTH4IHOI TEXHIKH MOJICIIOBAHHS JUISl MOJICTIOBaHHS €Hep-
TeTUYHUX CHUCTEM. Y CTarTTi orisnaerbesi BukopuctanHs GSSM mms Bupi-
IICHHS IPOOJIeM aJIEKBaTHOTO MOJICTIOBAHHS MHAMIKH CyJacHHX CHEpreTH-
YHUX CHUCTEM, sIKi XapaKTepH3yIOThCS 1X TIOPHIHOIO MPHPOJIOI0, CKIIAHUMHI
peXUMaMH MEPEMHUKAHHS Ta HENMHIHHUME B3a€MOALIMH. AHANIZY€eThCS YHi-
BepcanbHicTs GSSM y NOpIBHSAHHI 3 TPagULIHHAMH MiJXOAaMH, 30KpeMa
HOTO 3/1aTHICTH IHTErPyBaTH SIK Oe3MepepBHY, TakK i AUCKPETHY JUHAMIKY CH-
CTeM y €IMHY MOKpaIeHy CTpYKTypy. Takoxk oOroBOpIOEThCS 3[aTHICTh MO-
JIeTTi 3aXOIUTIOBATH SIK JiHIMHI, Tak 1 HEMiHIWHI PeKUMH, 1i CyMIiCHICTb i3 Cy-
YacHUMH OOYHCIIIOBAIPHUMHU IHCTPYMEHTaMH Ta 3aCTOCYBaHHS B PI3HHX
eHepreTHYHuX cucteMax. OKpeMo pO3IIINAIOTECS OCHOBH, aHAIITHYHI Ta
YHCIOBI aCTIeKTH AndepeHIiansHo-anreopaiunnx piBHaHb (DAE). Edexrus-
HicTb GSSM n1eMOHCTPY€ETHCST Yepe3 KOMIT FOTEPHUH €KCIIEPHMEHT 3 MoJie-
JIFOBaHHSA AWHAMIKHU IPUCTPOIO IS PETYNTIOBAHHS €HepromocradanHs. Exc-
HNEPUMEHTH 3 KOMITIOTEPHOTO MOJENIOBAHHS MiAKPECTIOITh IIepeBaru
GSSM 1nopiBHSHO 3 TPaJUI[IHHUMK METOAAMH 3 TOUKH 30py TOYHOCTI, 00UH-
CITIOBAJIbHOI €()eKTUBHOCTI Ta MacmTaboBaHOCTI. BomHOUac BH3HAYAIOTHCS
obuacri, 1e HeoOXiHi MOJABII JOCTIPKEHHS Ta YAOCKOHAICHHS.

KunrouoBi cioBa: enepeemuuni cucmemu, y3azanibhena mooenb npoc-
mopy cmauie, OupepenyianbHo-aneeOpaiuti pieHsAHHS, MAmMeMamuite Mo-
0en08anHsl, OUHAMIKA eHepeemu4HOl cucmemu.

OTtpumano: 16.12.2024
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