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ЧИСЕЛЬНИЙ АНАЛІЗ МЕТОДОМ ДВОБІЧНИХ  
НАБЛИЖЕНЬ ДЕЯКИХ ЗАДАЧ СТАЦІОНАРНОЇ  

НЕЛІНІЙНОЇ ТЕПЛОПРОВІДНОСТІ 

Задачу дослідження процесів теплопровідності в об’єктах, 
розміщених у нелінійних середовищах, зводять до розв’язання 
крайових задач для нелінійного рівняння теплопровідності, в 
якому коефіцієнти та/або функція потужності теплових дже-
рел змінюються із температурою за певним законом. Серед 
чисельних підходів до розв’язання таких задач для нелінійних 
рівнянь математичної фізики можна виокремити метод скін-
ченних різниць, скінченних елементів, варіаційні, проєкційні 
та різноманітні ітераційні методи. З останньої групи найбільш 
потужним можна вважати метод двобічних наближень, оскіль-
ки він дозволяє отримати зручну оцінку похибки наближеного 
розв’язку й обґрунтувати існування розв’язку задачі. 

Метою роботи є дослідження застосовності методу двобіч-
них наближень на основі використання функцій Гріна до 
розв’язання першої крайової задачі для нелінійного одновимі-
рного рівняння теплопровідності зі степенево залежним від 
температури коефіцієнтом теплопровідності та експоненціаль-
но залежною від температури функцією потужності внутріш-
ніх джерел тепла. Для досягнення поставленої мети була ви-
конана заміна невідомої функції, а нова отримана крайова за-
дача була зведена до еквівалентного інтегрального рівняння 
Гаммерштейна, яке було розглянуто як нелінійне операторне 
рівняння у напівупорядкованому банаховому просторі. Сфор-
мульовано умови існування єдиного додатного розв’язку зада-
чі та умови двобічної збіжності до нього послідовних набли-
жень. Розроблений метод програмно реалізовано та дослідже-
но при розв’язанні тестової задачі. Результати обчислювально-
го експерименту наведено у графічній та табличній формах. 

Ключові слова: нелінійна теплопровідність, нелінійна 
крайова задача, додатний розв’язок, функція Гріна, двобічний 
ітераційний метод, рівняння з ізотонним оператором, мате-
матичне моделювання. 

Вступ. При розв’язання важливих прикладних задач досліджен-

ня процесів та об’єктів у різноманітних важливих сферах життєдіяль-

ності сучасного суспільства виникає необхідність використання оп-
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тимальних методів математичного моделювання та обчислювального 

математичного апарату. За цих обставинах виникає потреба викорис-

тання ефективних чисельних методів для розв’язання початкових, 

крайових та початково-крайових задач для квазілінійних диференціа-

льних рівнянь з коефіцієнтом, нелінійно залежним від шуканої функ-

ції [1-4]. Сучасний математичний апарат пропонує великий вибір ме-

тодів аналізу такого класу задач. Це, зокрема, методи теорії подібнос-

ті, методи скінченних різниць, скінченних елементів, граничних інте-

гральних рівнянь [1, 5-8] або послідовних наближень з двобічним 

характером збіжності [9, 10, 17, 18]. Остання група методів дає змогу 

будувати дві послідовності функцій, які відповідно знизу та зверху 

апроксимують шуканий розв’язок задачі. Також ці методи надають 

можливість дослідникам мати апарат для доведення існування й єди-

ності розв’язку, дають зручну апостеріорну оцінку похибки набли-

жень, а отже, і зручний критерій закінчення ітерацій, що робить їх 

дуже заманливими для використання порівняно з іншими методами 

розв’язання крайових задач для стаціонарних рівнянь. 

Теоретичним підґрунтям методів двобічних наближень є теорія не-

лінійних операторів у напівупорядкованих банахових просторів [11-16]. 

Отже, актуальною є наукова задача вдосконалення та розширен-

ня сфери застосування двобічних ітераційних методів. 

Постановка задачі. Розглядатимемо задачу знаходження додат-

ного розв’язку нелінійної крайової задачі вигляду 

 ud du
u e

dx dx

 
 

  
 

, 0 x l  , (1) 

 (0) ( ) 0u u l  . (2) 

Задача (1), (2) є математичною моделлю процесу теплопровідно-

сті у випадку, коли коефіцієнт теплопровідності степенево залежить 

від температури і коли на (0, )l  наявні джерела тепловиділення, що 

розподілені за експоненціальним законом ( ) uf u e  (параметр   

характеризує їх потужність). Всі параметри, що входять у постановку 

задачі (1), (2), вважатимемо додатними. 

Дана робота продовжує дослідження, розпочаті у [18-20]. 

Метод розв’язання. У задачі (1), (2) зробимо заміну 
1 1

1 1( 1)u      , де ( )x   – нова невідома функція. Тоді для 

функції v  отримаємо крайову задачу 
1 1

1 1
2

( 1)

2

d
e

dx

   


   , 0 x l  , 
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(0) ( ) 0l   , 

або, увівши позначення ( 1)    , 
1

1






, крайову задачу 

 
2

2

d
e

dx

 
   , 0 x l  , (3) 

 (0) ( ) 0l   . (4) 

Для розв’язання задачі (3), (4) застосуємо метод двобічних на-

ближень на основі використання функції Гріна [10, 17-20]. 

Задача (3), (4) еквівалентна інтегральному рівнянню Гаммерштейна 

 ( )

0

( ) ( , )

l
sx G x s e ds

    , (5) 

де 
( ), 0 ,1

( , )
( ), ,

x l s x s
G x s

s l x s x ll

  
 

  
  – функція Гріна першої крайової 

задачі для оператора 
2

2

d

dx
  на відрізку [0, ]l . 

Узагальненим розв’язком задачі (3), (4) назвемо функцію 

[0, ]C l  , яка є розв’язком рівняння (5). Тоді розв’язком (узагаль-

неним) вихідної задачі (1), (2) вважатимемо функцію 
1 1

* *1 1( 1) ( )u      . 

Оператор T , що визначається правою частиною інтегрального 

рівняння (5), діє у просторі [0, ]C l  за правилом 

( )

0

( , )

l
v sG x s e ds
   

і є цілком неперервним ізотонним оператором. 

У конусі   невід’ємних функцій з [0, ]C l  виділимо інваріант-

ний для оператора T  конусний відрізок 0 0,v w   умовами 

0[ ( )]
0

0

( , ) ( )

l
v s

G x s e ds v x
    для всіх [0, ]x l  , 

0[ ( )]
0

0

( , ) ( )

l
w s

G x s e ds w x
    для всіх [0, ]x l  . 

Інваріантність конусного відрізка 0 0,v w   означає, що  

0 0 0 0( , ) ,T v w v w     . 
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Позначимо ( )F e
  . Оскільки (0) 0F  , то зазначений інва-

ріантний конусний відрізок можна шукати у вигляді 0 0,v w   

0,   . Тоді нерівності, що його визначають, набувають вигляду 

0

( , ) 0

l

G x s ds    для всіх [0, ]x l  , 

0

( , )

l

e G x s ds
    для всіх [0, ]x l  . 

Перша з цих нерівностей виконується завжди, а другу нерівність 
можна записати у вигляді 

 M e
  , (6) 

де 
2

[0, ]
0

max ( , )
8

l

x l

l
M G x s ds


 

 
 . 

Оскільки величина 
0 0

[0, ]
max ( ( ) ( ))
x l

w x v x 


   має бути якомога 

меншою для більш швидкої збіжності ітерацій, то при практичній 

реалізації ітераційного процесу слід взяти найменше  , що задово-

льняє нерівність (6), тобто взяти найменший корінь рівняння 

M e
  . 

Сформуємо далі ітераційний процес за схемою: 

 
( )( 1) [ ( )]

0

( ) ( , )
k

l
k v sv x G x s e ds

    , 0,1, 2, ...k  , (7) 

 
( )( 1) [ ( )]

0

( ) ( , )
k

l
k w sw x G x s e ds

    , 0,1, 2, ...k  , (8) 

 (0) ( ) 0v x  , (0) ( )w x  . (9) 

Збіжність послідовних наближень, що формуються за схемою (7)-

(9), до єдиної на інваріантному конусному відрізку 0,    нерухомої 

точки оператора T  гарантує виконання умов, наведених у [10]. 
Отже, матиме місце така теорема. 

Теорема. Нехай на інваріантному конусному відрізку 0,    

існує єдина нерухома точка ізотонного оператора T . Тоді ітерацій-

ний процес (7)-(9) збігається у нормі простору [0, ]C l  до єдиного на 

0,    неперервного додатного розв’язку    крайової задачі (3), 

(4), причому має місце ланцюг нерівностей 
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(0) (1) ( )

( ) (1) (0)

0 ... ...

... ... .

k

k

v v v

w w w 

     

      
 (10) 

Нерівності (10) як раз і характеризують ітераційний процес (7)-

(9) як метод двобічних наближень. Перевагою цього методу є те, що 

на кожній k -й ітерації відомою є верхня та нижня оцінки шуканого 

розв’язку і для наближення ( ) ( ) ( )1
( ) ( ( ) ( ))

2

k k kx w x v x    матимемо 

зручну апостеріорну оцінку похибки: 

( ) ( ) ( ) ( ) ( )

[0, ]

1 1
max ( ( ) ( ))

2 2

k k k k k

x l
w v w x v x 


    

 
.  

Тоді, якщо задана точність 0  , то ітерації слід проводити до 

виконання нерівності 
( ) ( )

[0, ]
max ( ( ) ( )) 2k k

x l
w x v x 


 

 
 і з точністю   мо-

жна вважати, що ( )( ) ( )kx x   , а отже, 

1 1

* ( )1 1( ) ( 1) ( )ku x      . 

Обчислювальний експеримент. Проведемо обчислювальний 

експеримент для задачі (3), (4), у якій покладемо 1l  , 2  , 1   і 

1

2
  . Умови збіжності метода двобічних наближень перевіряють-

ся безпосередньо. Отримано, що 150,55  . Запустимо ітераційний 

процес вигляду (7) – (9) і задамо точність 610  . 

Ітераційний процес зійшовся із заданою точністю до розв’язку 

вихідної задачі за 11 ітерації. Результати ітерацій наведено на рис. 1 і 

у табл. 1 та 2. 

 

Рис. 1. Графіки 
( )

( )
k

v x  і 
( )

( )
k

w x , 0, 1, 2, ...,11k   
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Таблиця 1 

Значення наближеного розв’язку (11) ( )x  

x  0,0 0,1 0,2 0,3 0,4 0,5 

(11)
( )x  0,000000 0,159277 0,288994 0,384593 0,443109 0,462806 

x  0,6 0,7 0,8 0,9 1,0 

(11)
( )x  0,443109 0,384593 0,288994 0,159277 0,000000 
 

Таблиця 2 

Значення наближеного розв’язку (11) ( )u x  

x  0,0 0,1 0,2 0,3 0,4 0,5 

(11)
( )u x  0,000000 0,564406 0,760255 0,877033 0,941392 0,962088 

x  0,6 0,7 0,8 0,9 1,0 

(11)
( )u x  0,941392 0,877033 0,760255 0,564406 0,000000 

Висновки. У роботі вперше запропоновано чисельний метод 

отримання додатного розв’язку першої крайової задачі для одновимі-

рного рівняння теплопровідності з експоненціально нелінійним кое-

фіцієнтом теплопровідності та джерелом тепла, розподіленим за сте-

пеневим законом, за допомогою методу двобічних наближень на ос-

нові використання функції Гріна. Ці результати будуть корисними в 

дослідженнях у критично важливих галузях розвитку нашої держави, 

таких як медицина, фізика, біологія, будівництво тощо. 
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NUMERICAL ANALYSIS BASED ON THE METHOD  
OF TWO-SIDED APPROXIMATIONS FOR SOLVING  

SOME PROBLEMS OF STATIONARY  
NONLINEAR HEAT CONDUCTIVITY 

The task of studying the processes of heat conduction in objects located 

in nonlinear environments is reduced to solving boundary value problems for 

a nonlinear heat conduction equation, in which the coefficients and/or the 

power function of heat sources vary with temperature according to certain 

rules. Among the numerical approaches applicable to solving such problems 
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for nonlinear equations of mathematical physics, one can distinguish the fi-

nite difference method, finite element method, variational, projection and 

manifold iterative methods. Given those options, we can consider the method 

of two-sided approximations as the most useful since it allows the researcher 

to obtain a convenient estimate for the error of the approximate solution and 

justify the existence of a solution to the original problem. 

The aim of the article is to study the applicability of the method of 

two-sided approximations based on usage of Green's functions to solve the 

first boundary value problem for a nonlinear one-dimensional heat conduc-

tion equation with a power-dependent temperature coefficient of heat con-

duction and an exponentially temperature-dependent power function of in-

ternal heat sources. To achieve the set goal, the original problem was re-

placed, and the new obtained boundary value problem was reduced to the 

equivalent Hammerstein integral equation, which was considered as a non-

linear operator equation in a semi-ordered Banach space. The conditions 

for the existence of a unique positive solution to the problem and the con-

ditions for two-sided convergence of approximations to it were formulated. 

The developed method was implemented programmatically and investigat-

ed when solving a test problem. The results of the computational experi-

ment are given via graphical and tabular information. 

Key words: nonlinear heat conduction, nonlinear boundary value 

problem, positive solution, Green’s function, two-sided iterative method, 

equation with isotone operator, mathematical modeling. 

Отримано: 14.12.2025 
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