
Серія: Технічні науки. Випуск 28

37

UDC 004.415.53
DOI: 10.32626/2308-5916.2025-28.37-48

V. Ivaniuk*, Doctor of Technical Sciences,
A. Verlan**, Doctor of Technical Sciences, Professor,
M. Miastkovska*, PhD in Pedagogical Sciences,
M. Kosinov*

*Kamianets-Podilskyi Ivan Ohiienko National University,
Kamianets-Podilskyi,
** National Technical University of Ukraine
«Igor Sikorsky Kyiv Polytechnic Institute», Kyiv;
Norwegian University of Science and Technology, Norway

STRUCTURAL AND FUNCTIONAL MODELING
OF AN AUTOMATED TESTING SYSTEM

FOR ADAPTIVE WEB INTERFACES

This study addresses a critical scientific and applied problem:
enhancing the efficiency of automated testing for web applications
developed using Responsive Web Design (RWD). The relevance of
this research arises from the widespread adoption of the Mobile
First paradigm, which imposes significant challenges on Quality
Assurance (QA) processes due to the need for consistent function-
ality across heterogeneous platforms.

An analysis of conventional approaches, particularly the Page
Object Model (POM) pattern, revealed their limitations in multi-
platform environments. These shortcomings include exponential
growth in code volume, violations of Clean Code principles, and
difficulties in adapting to structural discrepancies in Document Ob-
ject Model (DOM) elements across different viewports.

The objective of this work is to improve testing efficiency by
designing an architecture that clearly separates scenario-level busi-
ness logic from interface-level technical implementation. To
achieve this, a structural-functional system model is proposed,

formalized as a set-theoretic tuple S = D, P, B, T, C where D rep-
resents test data, P page objects, B business steps, T specifications,
and C the context state space. Introducing a dynamic context ena-
bles modeling page behavior as a function of a configuration vec-
tor, ensuring adaptability to varying execution conditions.

The theoretical framework was implemented in practice
through the development of a four-layer architecture based on the
Playwright tool. A novel algorithm for dynamic context injection
was introduced, enabling automatic selection of locator strategies
and interaction modes (Touch/Mouse) during runtime.

Experimental evaluation demonstrated that the proposed approach
ensures architectural invariance of tests, facilitates efficient matrix
builds in CI/CD pipelines (GitHub Actions) for parallel execution in
isolated containers, and reduces code maintenance costs by 35-40%.

© V. Ivaniuk, A. Verlan, M. Miastkovska, M. Kosinov, 2025

Математичне та комп’ютерне моделювання

38

Furthermore, it eliminates the need to duplicate scenarios for new de-
vices, thereby significantly improving scalability and maintainability.

Key words: Automated testing, adaptive web interfaces, Re-
sponsive Web Design, structural-functional modeling, Playwright,
Page Object Model, execution context, CI/CD, matrix build, cross-
platform testing.

Introduction. The current stage of web technology development is
marked by the dominance of the Mobile First paradigm and the wide-
spread adoption of adaptive web interfaces, commonly implemented
through Responsive Web Design (RWD). Ensuring accurate rendering and
stable functionality of web applications across a diverse range of devices –
from smartphones and tablets to desktop monitors – has become a critical
requirement for software quality assurance [1].

However, the heterogeneity of client platforms introduces substantial
challenges for Quality Assurance (QA) processes [2, 3]. The necessity to vali-
date each business scenario across N device types results in a multiplicative

increase in the number of test cases. Within traditional approaches, this leads
to exponential growth in regression testing execution time and significantly
complicates the maintenance of automated test codebases [4, 5].

Problem statement. Traditional architectural patterns for test automa-
tion – most notably the Page Object Model (POM) – were originally de-
signed for uniform, static interfaces and do not adequately address the
complexities introduced by adaptive layouts.

When applying the classical POM approach to testing responsive appli-
cations, engineers encounter a fundamental issue of structural discrepancy: the
same logical element (e.g., a navigation menu) may exhibit different DOM
structures, interaction mechanisms, and visual representations across devices.
This necessitates the inclusion of numerous conditional constructs (e.g., if–else
statements) within page methods to determine the current viewport state.

Such practices violate Clean Code principles, lead to logic duplica-
tion, and result in fragile, non-scalable framework architectures. Conse-
quently, there is an objective need to design and model an automated test-
ing system architecture that abstracts scenario-level business logic from
the execution context (device type) and enables efficient scenario adapta-
tion without redundant code duplication.

1. Review of recent research and publications. The problem of en-
suring the quality of web systems has been extensively addressed in the
works of contemporary researchers and software engineering practition-
ers [2, 6-8]. Fundamental approaches to test automation traditionally rely
on browser interaction tools. For many years, Selenium WebDriver re-
mained the de facto standard, implementing the W3C WebDriver protocol.
However, as noted in the literature, Selenium’s architecture exhibits sever-
al limitations when dealing with modern dynamic interfaces (e.g., Single

Серія: Технічні науки. Випуск 28

39

Page Applications), particularly in synchronizing asynchronous events and
achieving optimal execution speed [8, 9].

In response, next-generation tools such as Playwright and Cypress
have gained popularity. Playwright, in particular, leverages direct interac-
tion through the Chrome DevTools Protocol (CDP), enabling control over
network requests and mobile device emulation at the browser engine level.
While this addresses technical aspects of emulation, it does not resolve the
challenge of organizing test code effectively [8-10].

From an architectural perspective, the Page Object Model (POM)
remains the most widely adopted pattern, encapsulating page elements
within dedicated classes. Despite its popularity, classical POM becomes
inefficient in the context of responsive web design. When DOM structures
vary with screen width (e.g., hidden elements, navigation switching from
horizontal to a «burger menu»), developers must either create separate
Page Objects for each device – violating the DRY principle – or overload
methods with conditional statements [1, 11].

An alternative approach, the Screenplay pattern (implemented in the
Serenity BDD framework), offers improved composition and adherence to
SOLID principles. However, its complexity and steep learning curve often
make it excessive for medium-scale projects [12].

A review of the literature reveals that most existing solutions focus on
technical aspects such as element location strategies or parallel execution.
Conversely, insufficient attention has been devoted to architectural models of
data and context that enable dynamic adaptation of test scenarios to device
configurations without modifying the test code. The absence of a formalized
model for constructing cross-platform tests results in increased maintenance
costs and reduced stability of automation frameworks.

2. Objective of the Study. The primary objective of this research is
to improve the efficiency of quality assurance processes for adaptive web
applications by designing and structurally-functional modeling an archi-
tecture for an automated testing framework. This architecture aims to en-
sure a clear separation between test business logic and the technical specif-
ics of interface implementation across heterogeneous device types, thereby
enabling scalable and maintainable cross-platform testing.

3. Presentation of the Main Material.

3.1. Formalization of the Model. To provide a mathematical descrip-
tion of the proposed architecture and analyze its properties, the automated

testing system S is formalized as an ordered tuple of sets:

, , , , ,S D P B T C

where  1 2, , , nD d d d  – the set of test data (Test Data Layer), containing

input parameters for scenarios, separated from the program code;

Математичне та комп’ютерне моделювання

40

 1 2, , , kP p p p  – the set of page objects (Page Objects), encapsulating

methods for interacting with interface elements;  1 2, , , mB b b b  – the set

of business logic components (Business Steps), implementing user scenarios

at the action abstraction level (e.g., login, addToCart);  1 2, , , zT t t t  – the

set of test specifications (Test Cases), initiating verification; C – the state

space of the execution context (environment configuration).

A key distinction of the developed model is the introduction of the

set C , which defines adaptability parameters. The context state c C can

be represented as a vector of parameters:

 , , , ,width heightc v v ua isMobile

where 𝑣 denotes the viewport dimensions, ua is the browser User Agent,

and   0,1 isMobile is a Boolean flag indicating the type of device (mo-

bile/desktop).

The interaction of system components is described as follows. In tra-

ditional architectures, the dependency between a test and a page object is

expressed as a direct mapping: t p where t denotes the test and p the

page object. In the proposed model, an intermediate abstraction layer B

(business steps) is introduced, decoupling scenario logic from interface

implementation. Furthermore, the behavior of page objects P is repre-

sented as a function of the context C .

Let Select be a function that determines the appropriate element loca-

tor on a page [10]. For each page object ip , the strategy for interacting

with the interface is defined by the mapping:

: Locatorsf P C  ,

where Locators denotes the set of DOM selectors relevant to the specific

device configuration.

Consequently, the execution of a particular business logic step jb

can be expressed as a composition of functions:

   ,j x i xb d p d c ,

where xd represents the test data, and ip adapts its behavior dynamically

based on the current context c . This formalization ensures that interaction

strategies are context-aware, eliminating hard-coded conditional logic and

enabling scalable, cross-platform test automation.

The execution of a test t T is formalized as the sequential applica-

tion of a set of business logic steps tB B over the corresponding test

data tD D within a given context c :

Серія: Технічні науки. Випуск 28

41

    ,

t

t c
b B

Result t b D




where the operator c∣ denotes execution under the constraints imposed by

the device context (e.g., emulation of touch events instead of mouse clicks

when 1isMobile ).

This formalization demonstrates that a change in context c (e.g.,

switching from Desktop to Mobile) requires modification only of the in-

ternal implementation of the function f within the set P , while leaving

the sets T (tests) and B (business logic) invariant. This provides a math-

ematical justification for eliminating test code duplication when scaling to

new platforms, ensuring architectural stability and maintainability.

3.2. System Architecture. The implementation of the proposed math-

ematical model , , , , S D P B T C is based on a modular hierarchical ar-

chitecture, where each layer has a clearly defined area of responsibility.

The structural-functional diagram of the framework is shown in Fig. 1.

Fig. 1. Structural-functional diagram of the framework architecture

The system components are organized into the following functional

layers:

1. Infrastructure Core (Playwright). The central technological block of

the system, responsible for low-level browser interaction via the Web

API. It manages execution contexts, emulates device characteristics,

and generates reporting artifacts [11]. Playwright serves as the founda-

tion upon which all higher-level operations are built.

2. Test Data Layer (UTILS). This layer provides data and auxiliary tools

(D). By moving constants and configurations to external files and us-

ing a data generator, the model allows the initialization of adaptability

parameters (context C) independently of the test code itself.

Математичне та комп’ютерне моделювання

42

3. Page Objects Layer (Core Libraries). This layer implements page objects
(P), encapsulating the logic for interacting with interface elements.
Adaptability is addressed at this level: class methods use dynamic selectors
whose choice depends on viewport parameters and the execution context.

4. Business Flow Layer (Business Logic Layer). The intermediate layer
(B) aggregates atomic actions on page objects into complete business
scenarios (e.g., «Order Processing Flow»). This layer is implemented
via high-level methods in the Core Libraries, allowing full abstraction
of the specification level from technical layout details and providing
the property of «Business Readable» tests.

5. Spec Layer (TEST SUITE). The top layer of the architecture, intended
for describing target verifications (T). Tests at this level are declara-
tive and platform-invariant because they interact with business logic
that has already been adapted for the specific device type (Mo-
bile/Desktop) at the lower levels.

3.3. Algorithmic Support for System Adaptability. The functional
core of the developed model lies in its ability to dynamically adjust behav-
ior based on client device parameters. This adaptability is achieved
through the implementation of an adaptive interaction algorithm, whose
key component is the execution context injection mechanism.

The operation of this mechanism is formalized as a testing strategy
selection algorithm, schematically represented in Fig. 2.

Fig. 2. Flowchart of the algorithm for dynamic adaptation

of the test scenario to the device context

Серія: Технічні науки. Випуск 28

43

According to the presented diagram, the algorithm includes the fol-

lowing steps:

1. Reading the environment configuration. At the initial execution stage

(Setup phase), the system core accesses the configuration layer

(UTILS) to determine the target device profile, including the User

Agent and viewport parameters.

2. Formation of the context descriptor. The system variable isMobile is

assigned a Boolean value («true» or «false»), which becomes a global

marker for the current execution flow.

3. Context-aware component initialization. When a test invokes methods

of page objects (Core Libraries), the constructed descriptor is automat-

ically injected. This enables each system component to be aware of its

execution environment.

4. Logical diffusion of locators and actions. At this stage, the algorithm

branches. The system performs a dynamic lookup of selectors within

the internal dictionary of a page object: in a mobile context, specialized

selectors (e.g., for a burger menu) and corresponding interaction types

(touch events) are selected; in a desktop context, standard navigation

elements and mouse interaction events are used.

5. Verification execution. The final action is performed on the selected

element, after which the results are passed to the reporting layer.

Such an algorithmic design ensures the property of architectural invari-

ance, meaning that the upper level of the model (test scenarios) remains un-

changed when switching between different platforms. All adaptation complex-

ity is localized within the strategy selection algorithm at the page library level.

This approach delivers substantial resource savings in the develop-

ment of automated tests for systems with a high degree of interface adapt-

ability, as it minimizes the need for duplicating verification logic across

multiple device configurations.

4. Results and Discussion. The experimental validation of the pro-

posed structural-functional model was carried out using an adaptive e-

commerce web application. To assess the effectiveness of the solution, a

comparative analysis was performed between two approaches:

 the traditional method, which involves linear development of test sce-

narios for each platform;

 the proposed model, based on a four-layer architecture with dynamic

context injection.

4.1. Analysis of Code Reuse Efficiency. The study revealed that the

traditional approach to automating tests for adaptive systems introduces

significant redundancy in the codebase. When test coverage is required for

Математичне та комп’ютерне моделювання

44

k device types (e.g., Desktop, Tablet, Mobile), the total code volume V

in the traditional model increases linearly:

 ,V n k 

where n – is the number of unique test scenarios.

The proposed model enables architectural invariance of test scenari-

os with respect to the execution platform. By abstracting business logic

from interface-specific implementation and introducing a dynamic context

layer, the same set of test specifications can be executed seamlessly across

heterogeneous environments (Desktop, Tablet, Mobile) without requiring

code duplication or structural modifications. This ensures scalability,

maintainability, and consistency in cross-platform quality assurance.

This means that the set of specifications T remains unchanged

(
desktop mobile

T T), while all adaptive changes are localized exclusively

at the page object level (P).

A comparative analysis of code maintenance metrics revealed the fol-

lowing results:

 Traditional Approach: modifying the logic of a single business process

(e.g., the authentication algorithm) requires changes in k separate test

suites, significantly increasing the risk of errors and regressions.

 Proposed Model: modifications are applied only to a single method

within the Business Flow Layer, which is automatically propagated

across all device configurations.

This architectural improvement resulted in a reduction of automated

test maintenance time by 35-40%, while simultaneously improving con-

sistency and reducing the likelihood of regression defects.

4.2. System Scalability. A key advantage of the proposed architecture

is its low scaling threshold when integrating new client device types. The

process of adding a new terminal (e.g., a specific tablet form factor) is

reduced to two simple steps:

1. Adding emulation parameters  , ,width heightv v ua to the UTILS configu-

ration layer.

2. Extending the selector dictionary in the corresponding Page Object

classes, only if the DOM structure for the new device introduces

unique characteristics.

This design ensures high system stability and minimizes the occur-

rence of false results (flaky tests) caused by incorrect rendering of ele-

ments across different viewports. By isolating context-specific adjustments

to configuration and selectors, the architecture preserves test logic invari-

ance and significantly reduces maintenance overhead.

Серія: Технічні науки. Випуск 28

45

4.3. Integration with CI/CD and Matrix Execution. The practical

applicability of the proposed model was validated through its integration

into continuous engineering workflows using GitHub Actions [12]. The

clear separation of business logic from execution context enabled the im-

plementation of a matrix build strategy, allowing parallel execution across

multiple device configurations within a single pipeline.

A schematic representation of the matrix execution process is shown

in Fig. 3, illustrating how isolated containers are instantiated for each con-

text parameter while sharing the same test specification set. This approach

ensures scalability, reproducibility, and efficient resource utilization in

modern CI/CD environments.

Fig. 3. Model of parallel test execution in a CI/CD environment (Matrix Build)

Within the experiment, an automated CI/CD pipeline was configured

to enable parallel execution of a single set of test specifications in three

isolated containers, each initialized with different context parameters C :

 Project A: Desktop Chrome (1920 × 1080).

 Project B: Mobile Safari (iPhone 13 emulation).

 Project C: Tablet WebKit (768 × 1024).

Математичне та комп’ютерне моделювання

46

This configuration allowed simultaneous validation across all target

platforms, generating a comprehensive quality report in a single pipeline

run. As a result, the total execution time of the regression suite was re-

duced to the duration of the longest individual test, rather than the cumula-

tive time of all tests. These findings confirm the high efficiency and scala-

bility of the proposed model for use in intensive Agile development cycles,

where rapid feedback and continuous integration are essential.

Conclusions. This study addresses a significant scientific and applied

problem: improving the efficiency of automated testing for adaptive web

interfaces. The key results are as follows:

1. Development of a Structural-Functional Model. A structural-functional

model of the testing system was proposed, based on a four-layer archi-

tecture and incorporating a dynamic device context injection mecha-

nism. This approach ensures architectural invariance of test scenarios

and resolves structural discrepancies in DOM elements across hetero-

geneous client platforms.

2. Formalization of Component Interaction. The interaction of system

components was formalized using a set-theoretic description, providing

mathematical justification for maintaining a single test codebase across

multiple platforms (Desktop, Tablet, Mobile). This demonstrates that

viewport changes do not require duplication of business logic, ensuring

scalability and maintainability.

3. Experimental Validation and Practical Impact. Experimental results

confirmed that the proposed model enables flexible adaptation to lay-

out changes and simplifies integration with modern CI/CD pipelines

through matrix build mechanisms. Practical application of the devel-

oped framework reduces automated test maintenance time by up to

40% and significantly enhances the reliability of cross-platform soft-

ware quality assurance.

References:

1. Marcotte E. Responsive Web Design. New York: A Book Apart, 2011. 150 p.

2. Balsam S., Mishra D. Web application testing – Challenges and opportuni-

ties. Journal of Systems and Software. 2025. Vol. 219. Art. 112186. DOI:

10.1016/j.jss.2024.112186. URL: https://www.researchgate.net/publication/-

383209867_Web_application_testing-Challenges_and_opportunities (acces-

sed: 10.10.2025).

3. Talakola S. Automated end to end testing with Playwright for React applications.

International Journal of Emerging Research in Engineering and Technology

(IJERET). 2024. Vol. 5 (1). P. 38-47. DOI: 10.63282/3050-922X.IJERET-V5I1P106.

4. Calculating Test Automation ROI: A Guide. URL: https://www.browserstack.com/-

guide/calculate-test-automation-roi (accessed: 09.10.2025).

Серія: Технічні науки. Випуск 28

47

5. Bylina B., Antończak A. Analysis of end-to-end test automation tools based on the

examples of Selenium WebDriver and Playwright. Conference on Computer Science

and Information Systems. 2024. DOI: 10.15439/2024F3747.

6. Certified Tester Advanced Level. Test Automation Engineering. Syllabus Ver-

sion 2.0. URL: https://istqb.org/wp-content/uploads/2024/11/ISTQB_CTAL-

TAE_Syllabus_v2.0.pdf (accessed: 25.10.2025).

7. Kosinov M., Myastkovska M. Aspects of automated testing framework design

enabling testing quality improvement. Problems and innovations in mathemat-

ical, digital, natural, and professional education: collection of materials of the

XIX International Scientific and Practical Online Conference. Kropyvnytskyi,

May 20-29, 2025 / ed. M. I. Sadovyi; compilers: M. I. Sadovyi, D. V. Reshet-

nikova, O. M. Tryfonova. Kropyvnytskyi: Information Department of

V. Vynnychenko CUSU, 2025. P. 117-119. URL: https://www.ldftpo.kr.ua/-

wp-content/uploads/2025/10/Tezu_XIX_konf.pdf (accessed: 03.11.2025).

8. Bylina B., Antończak A. Analysis of end-to-end test automation tools based on

the examples of Selenium WebDriver and Playwright. Position Papers of the

19th Conference on Computer Science and Intelligence Systems / eds. M. Bolan-

owski, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak. 2024. Vol. 40. P. 1-8.

DOI: http://dx.doi.org/10.15439/2024F3747. URL: https://annals-csis.org/-

Volume_40/drp/3747.html (accessed: 13.12.2025).

9. Moń M., Pańczyk B. A comparative analysis of web application test automa-

tion tools. Journal of Computer Sciences Institute. 2025. Vol. 35. P. 159-165.

DOI: 10.35784/jcsi.7119. URL: https://ph.pollub.pl/index.php/jcsi/article/-

view/7119 (accessed: 13.12.2025).

10. Gosik P., Miłosz M. Comparative analysis of Cypress and Playwright frameworks

in end-to-end testing for applications based on Angular. Journal of Computer Sci-

ences Institute. 2025. Vol. 36. P. 320-327. DOI: 10.35784/jcsi.7662.

11. Stocco A., Leotta M., Ricca F., Tonella P. APOGEN: automatic page object

generator for web testing. Software Quality Journal. 2017. Vol. 25. P. 1007-

1039. DOI: https://doi.org/10.1007/s11219-016-9331-9

12. Yuniasri D., Badriyah T., Sa'adah U. A Comparative Analysis of Quality

Page Object and Screenplay Design Pattern on Web-based Automation

Testing. 2020 International Conference on Electrical, Communication,

and Computer Engineering (ICECCE). Istanbul, 2020. P. 1-6. DOI:

10.1109/ICECCE49384.2020.9179470.

13. Leotta M., Stocco A., Ricca F., Tonella P. ROBULA+: An Algorithm for Gen-

erating Robust XPath Locators for Web Testing. Journal of Software: Evolu-

tion and Process. 2016. Vol. 28. Is. 3. P. 177-204. DOI: https://doi.org/-

10.1002/smr.1771.

14. Playwright Docs. Test Isolation URL: https://playwright.dev/docs/browser-

contexts. (accessed: 28.11.2025).

15. Kosinov M. S. Features of CI/CD process integration for automated web applica-

tion testing based on Github Actions. Bulletin of Kamianets-Podilskyi Ivan Ohiien-

ko National University. Physical and Mathematical Sciences. Kamianets-Podilskyi:

Kamianets-Podilskyi Ivan Ohiienko National University, 2025. Is. 18. P. 51-55.

URL: https://fizmat.kpnu.edu.ua/wp-content/uploads/2025/12/visnyk-18-2025-15-

12-2025.pdf (accessed: 15.12.2025).

Математичне та комп’ютерне моделювання

48

СТРУКТУРНО-ФУНКЦІОНАЛЬНЕ МОДЕЛЮВАННЯ
СИСТЕМИ АВТОМАТИЗОВАНОГО ТЕСТУВАННЯ

АДАПТИВНИХ ВЕБ-ІНТЕРФЕЙСІВ

У статті розв’язано актуальне науково-прикладне завдання підви-

щення ефективності автоматизованого тестування веб-застосунків,

розроблених на основі адаптивного дизайну (Responsive Web Design).

Актуальність дослідження зумовлена тим, що в умовах домінування

концепції Mobile First забезпечення стабільної роботи на гетероген-

них платформах створює критичне навантаження на QA-процеси. На

основі аналізу традиційних підходів, зокрема патерну Page Object

Model, виявлено їхню неефективність у мультиплатформенному сере-

довищі, що проявляється в експоненційному зростанні обсягу коду,

порушенні принципів Clean Code та складності адаптації до структур-

них розбіжностей DOM-елементів у різних в’юпортах.

Метою роботи є підвищення ефективності тестування шляхом роз-

робки архітектури, що забезпечує чітке розмежування бізнес-логіки

сценаріїв та технічної реалізації інтерфейсу. Для цього запропоновано

структурно-функціональну модель системи, формалізовану теоретико-

множинним описом у вигляді кортежу S = D, P, B, T, C, який включає

множини тестових даних, об’єктів сторінок, бізнес-кроків, специфікацій

та простір станів контексту. Введення динамічного контексту дозволяє

представити поведінку сторінок як функцію від вектора конфігурації,

забезпечуючи адаптивність системи до умов виконання.

Практичну реалізацію теоретичних положень здійснено шляхом

розробки фреймворку з чотирирівневою архітектурою на базі інстру-

ментарію Playwright. Впроваджено алгоритм динамічної ін’єкції кон-

тексту, що автоматично вибирає релевантну стратегію пошуку лока-

торів і тип взаємодії (Touch/Mouse) під час виконання. Експеримента-

льні результати засвідчили, що запропонований підхід гарантує архі-

тектурну інваріантність тестів, дозволяє ефективно застосовувати ма-

тричну збірку в CI/CD (GitHub Actions) для паралельного виконання в

ізольованих контейнерах та скорочує витрати часу на підтримку ко-

дової бази на 35-40%, усуваючи необхідність дублювання сценаріїв

для нових пристроїв.

Ключові слова: автоматизоване тестування, адаптивні веб-

інтерфейси, Responsive Web Design, структурно-функціональне моде-

лювання, Playwright, Page Object Model, контекст виконання, CI/CD,

матрична збірка, кросплатформне тестування.

Отримано: 20.12.2025

	К. В. Василишин, С. М. Ламтюгова, канд. фіз.-мат. наук
	Харківський національний університет радіоелектроніки, м. Харків
	чисельний аналіз МЕТОДОМ ДВОБІЧНИХ НАБЛИЖЕНЬ деяких задач стаціонарної НЕЛІНІЙНОЇ ТЕПЛОПРОВІДНОСТІ
	Ключові слова: нелінійна теплопровідність, нелінійна крайова задача, додатний розв’язок, функція Гріна, двобічний ітераційний метод, рівняння з ізотонним оператором, математичне моделювання.
	Список використаних джерел:
	Numerical ANalysis Based on the METHOD OF TWO-SIDED APPROXIMATIONS for solving Some Problems of Stationary NONLINEAR HEAT CONDUCTIvity

	Key words: nonlinear heat conduction, nonlinear boundary value problem, positive solution, Green’s function, two-sided iterative method, equation with isotone operator, mathematical modeling.
	А. І. Дегула, канд. техн. наук,
	Н. А. Харченко, канд. техн. наук,
	В. В. Гриб, аспірант
	Сумський державний університет, м. Суми
	АНАЛІЗ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ МОДЕЛЮВАННЯ ТЕХНОЛОГІЧНОГО ПРОЦЕСУ ЛИТТЯ

	Ключові слова: математичне моделювання, технологічний процес, лиття металу, якість продукції, дефекти.
	Список використаних джерел:
	SOFTWARE ANALYSIS FOR MODELIZATION OF THE CASTING TECHNOLOGICAL PROCESS

	Keywords: mathematical modeling, technological process, metal casting, product quality, defects.
	I. Zajachuk*, Candidate of Technical Sciences,
	B. Blagitko**, Candidate of Technical Sciences
	*Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, Lviv, **Ivan Franko National University of Lviv, Lviv
	FEATURES OF CALCULATING THE SIGNAL’S DISTORTION IN AN ELECTRONIC SYSTEM

	Key words: harmonics, harmonics sources, harmonic distortion sources, identification methods.
	References:
	ОСОБЛИВОСТІ РОЗРАХУНКУ СПОТВОРЕННЯ СИГНАЛУ В ЕЛЕКТРОННІЙ СИСТЕМІ

	Ключові слова: гармоніки, джерела гармонік, джерела гармонічних спотворень, методи ідентифікації.
	Д. О. Зуй,
	І. М. Кузьменко, канд. техн. наук,
	Т. В. Гевліч
	Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», м. Київ
	ЗАСТОСУВАННЯ МОДЕЛЕЙ ЧАСОВИХ РЯДІВ ДЛЯ ПРОГНОЗУВАННЯ ПОГОДНИХ УМОВ

	Ключові слова: прогнозування погоди, моделі часових рядів, ARIMA, SARIMA, SARIMAX.
	Список використаних джерел:
	APPLICATION OF ARIMA, SARIMA, AND SARIMAX MODELS FOR WEATHER FORECASTING

	Key words: weather forecasting, time series models, ARIMA, SARIMA, SARIMAX.
	V. Ivaniuk*, Doctor of Technical Sciences,
	A. Verlan**, Doctor of Technical Sciences, Professor,
	M. Miastkovska*, PhD in Pedagogical Sciences,
	M. Kosinov*
	*Kamianets-Podilskyi Ivan Ohiienko National University, Kamianets-Podilskyi, ** National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv; Norwegian University of Science and Technology, Norway
	STRUCTURAL AND FUNCTIONAL MODELING OF AN AUTOMATED TESTING SYSTEM FOR ADAPTIVE WEB INTERFACES

	Key words: Automated testing, adaptive web interfaces, Responsive Web Design, structural-functional modeling, Playwright, Page Object Model, execution context, CI/CD, matrix build, cross-platform testing.
	References:
	СТРУКТУРНО-ФУНКЦІОНАЛЬНЕ МОДЕЛЮВАННЯ СИСТЕМИ АВТОМАТИЗОВАНОГО ТЕСТУВАННЯ АДАПТИВНИХ ВЕБ-ІНТЕРФЕЙСІВ

	Ключові слова: автоматизоване тестування, адаптивні веб-інтерфейси, Responsive Web Design, структурно-функціональне моделювання, Playwright, Page Object Model, контекст виконання, CI/CD, матрична збірка, кросплатформне тестування.
	Є. В. Івохін, д-р фіз.-мат. наук, професор,
	Л. Т. Аджубей, канд. фіз-мат. наук,
	Д. І. Афонін
	Київський національний університет імені Тараса Шевченка, м. Київ
	ПРО ОДИН ГІБРИДНИЙ ПІДХІД ДО АГЕНТНОГО МОДЕЛЮВАННЯ ПРОЦЕСІВ ІНФОРМАЦІЙНОГО РОЗПОВСЮДЖЕННЯ

	Ключові слова: соціальні мережі, поширення інформації, агентне моделювання, скінченні автомати, гібридна модель, інформаційний вплив.
	Список використаних джерел:
	ON A HYBRID APPROACH TO AGENT-BASED MODELING OF INFORMATION DISSEMINATION PROCESSES

	Key words: social networks, information dissemination, agent-based modeling, finite state machines, hybrid model, information impact.
	О. Є. Коваленко*, д-р техн. наук, професор,
	В. А. Федорчук**, д-р техн. наук, професор
	*Національний університет біоресурсів і природокористування України, м. Київ, **Кам’янець-Подільський національний університет імені Івана Огієнка, м. Кам’янець-Подільський
	КОНВЕРГЕНЦІЯ МОДЕЛЕЙ ЗНАНЬ ТА МОДЕЛЕЙ ШТУЧНОГО ІНТЕЛЕКТУ

	Ключові слова: модель знань, модель штучного інтелекту, інтелектуальний агент, конвергенція моделей.
	Список використаних джерел:
	CONVERGENCE OF KNOWLEDGE MODELS AND ARTIFICIAL INTELLIGENCE MODELS

	Key words: knowledge model, artificial intelligence model, intelligent agent, model convergence.
	T. Pylypiuk, PhD in Physics and Mathematics,
	V. Shchyrba, PhD in Physics and Mathematics
	Kamianets-Podіlskyi Ivan Ohiienko National University, Kamianets-Podіlskyi
	MULTI-STREAM PROCESS MODELING

	Key words: cargo placement planning, multi-stream system, multi-criteria optimization, heuristic algorithms, software synchronization, atomicity.
	References:
	МОДЕЛЮВАННЯ БАГАТОПОТОКОВИХ ПРОЦЕСІВ

	Ключові слова: планування розміщення вантажу, багатопотокова система, багатокритеріальна оптимізація, евристичні алгоритми, програмна синхронізація, атомарність.

