Системи лінійних рівнянь зі спотвореними правими частинами над скінченними кільцями

Автор(и)

  • Антон Миколайович Олексійчук Інститут спеціального зв’язку та захисту інформації Національний технічний університет України «Київський політехнічний інститут імені І. Сікорського», м. Київ, Україна
  • Сергій Михайлович Ігнатенко Інститут спеціального зв’язку та захисту інформації Національний технічний університет України «Київський політехнічний інститут імені І. Сікорського», м. Київ, Україна
  • Михайло Васильович Поремський Інститут спеціального зв’язку та захисту інформації Національний технічний університет України «Київський політехнічний інститут імені І. Сікорського», м. Київ, Україна

DOI:

https://doi.org/10.32626/2308-5916.2017-15.150-155

Анотація

З метою побудови кореляційних атак на сучасні словоорієнтовані потокові шифри досліджуються методи розв’язання систем лінійних рівнянь зі спотвореними правими частинами над довільними скінченними кільцями. Отримано узагальнення й уточнення низки раніше відомих результатів стосовно методів розв’язання зазначених систем рівнянь над полями чи кільцями лишків порядку 2r

Посилання

Canteaut A. Fast correlation attacks against stream ciphers and related open problems. The 2005 IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security. ITW 2005, E-Proc. 2005. P. 49–54.

Meier W. Fast correlation attacks: methods and countermeasures. Lecture Notes in Computer Science — zaFSE’2011, Proceedings. Springer Verlag, 2011. P. 55–67.

Johansson T., Jonsson F. Correlation attacks on stream ciphers over GF(2n). The 2001 International Symposium on Information Theory — ISIT’2001, Proceedings. Springer Verlag, 2001. P. 140.

Zhang B., Xu C., Meier W. Fast correlation attacks over extension fields, largeunit linear approximation and cryptanalysis of SNOW 2.0. Cryptology ePrint Archive, Report 2016/311. http://eprint.iacr.org/2016/311.

Алексейчук А. Н., Игнатенко С. М. Метод оптимизации алгоритмов решения систем линейных уравнений с искаженной правой частью над кольцом вычетов по модулю 2N. Реєстрація, зберігання і обробка даних. 2005. Т. 7. № 1. С. 21–29.

Алексейчук А. Н., Игнатенко С. М. Нижняя граница вероятности восстановления истинного решения системы линейных уравнений с искаженной правой частью над кольцом вычетов по модулю 2N. Захист інформації. 2006. № 4. С. 6–12.

Чечёта С. И. Введение в дискретную теорию информации и кодирования: учебное издание. М.: МЦНМО, 2011. 224 с.

Балакин Г. В. Введение в теорию случайных систем уравнений. Труды по дискретной математике. М.: ТВП, 1997. Т. 1. С. 118.

Олексійчук А. М. Субекспоненційні алгоритми розв’язання систем лінійних булевих рівнянь зі спотвореними правими частинами. Прикладная радиоэлектроника. 2012. Т. 11. № 2. С. 3–11.

Bogos S., Tramer F., Vaudenay S. On solving LPN using BKW and variants. Implementation and analysis. Cryptology ePrint Archive, Report 2015/049. http://eprint.iacr.org/2015/049.

Blum A., Kalai A., Wasserman H. Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM. 2003. Vol. 50. N 3. P. 506–519.

Wagner D. A generalized birthday problem. Advances in Cryptology — CRYPTO’02, Proceedings. Springer Verlag, 2002. P. 288–303.

Minder L., Sinclair A. The extended k-tree algorithm. The 19th Annual ACM-SIAM Sympposium on Discrete Algorithms, Proceedings. 2009. P. 586–595.

##submission.downloads##

Опубліковано

2017-01-30