DOI: https://doi.org/10.32626/2308-5916.2018-17.26-39

Математичне моделювання коливних процесів у кусково-однорідному клиновидному циліндрично-круговому просторі з порожниною

Андрій Петрович Громик

Анотація


Актуальність теорії крайових задач для диференціальних рівнянь з частинними похідними, яка інтенсивно розвивається, обумовлена як значимістю її результатів для розвитку багатьох розділів математики, так і численними застосуваннями її досягнень при математичному моделюванні різних процесів і явищ фізики, механіки, біології, медицини, економіки, техніки.

Добре відомо, що складність досліджуваних крайових задач суттєво залежить від коефіцієнтів рівнянь та геометрії області в якій розглядається задача. На цей час досить детально вивчено властивості розв՚язків крайових задач для лінійних, квазілінійних та певних класів нелінійних рівнянь в однозв’язних областях.

Водночас багато важливих прикладних задач теплофізики, термомеханіки, теорії пружності, теорії електричних кіл, теорії коливань приводять до крайових задач для диференціальних рівнянь з частинними похідними не тільки в однорідних областях, коли коефіцієнти рівнянь є неперервними, але й в кусково-однорідних та неоднорідних областях, коли коефіцієнти рівняння є кусково-неперервними.

У пропонованій роботі методом інтегральних і гібридних інтегральних перетворень у поєднанні з методом головних розв՚язків (матриць впливу та матриць Гріна) за найбільш загальних припущень побудовано точні аналітичні розв’язки математичних моделей коливних процесів (гіперболічних початково-крайових задач спряження) в кусково-однорідному клиновидному циліндрично-круговому просторі з порожниною.

Одержані розв’язки мають алгоритмічний характер, неперервно залежать від параметрів і даних задачі та можуть бути використані як в подальших теоретичних дослідженнях, так і в практиці інженерних розрахунків реальних еволюційних процесів, які моделюються гіперболічними крайовими задачами (задачі акустики, гідродинаміки, теорії коливань механічних систем), які описуються циліндричною системою координат.


Повний текст:

PDF

Посилання


Перестюк М. О. Теорія рівнянь математичної фізики / М. О. Перестюк, В. В. Маринець. — К. : Либідь, 2006. — 424 с.

Дейнека В. С. Модели и методы решения задач в неоднородных средах / В. С. Дейнека, И. В. Сергиенко. — К. : Наук. думка, 2001. — 606 с.

Дейнека В. С. Модели и методы решения задач с условиями сопряжения / В. С. Дейнека, И. В. Сергиенко, В. В. Скопецкий. — К. : Наук. думка, 1998. — 614 с.

Сергиенко И. В. Математическое моделирование и исследование процессов в неоднородных средах / И. В. Сергиенко, В. В. Скопецкий, В. С. Дейнека. — К. : Наук. думка, 1991. — 432 с.

Каленюк П. И. Обобщенный метод разделения переменных / П. И. Каленюк, Я. Е. Баранецкий, З. Н. Нитребич. — К. : Наук. думка, 1993. — 232 с.

Самойленко В. Г. Рівняння математичної фізики / В. Г. Самойленко, І. М. Конет. — Київ : ВПЦ «Київський університет», 2014. — 283 с.

Конет І. М. Стаціонарні та нестаціонарні температурні поля в циліндрично-кругових областях / І. М. Конет, М. П. Ленюк. — Чернівці : Прут, 2001. — 312 с.

Громик А. П. Температурні поля в кусково-однорідних просторових середовищах / А. П. Громик, І. М. Конет, М. П. Ленюк. — Кам'янець-Подільський : Абетка-Світ, 2011. — 200 с.

Конет І. М. Гіперболічні крайові задачі математичної фізики в кусково-однорідних просторових середовищах / І. М. Конет. — Кам'янець-Подільський : Абетка-Світ, 2013. — 120 с.

Конет І. М. Параболічні крайові задачі в кусково-однорідних середовищах / І. М. Конет, Т. М. Пилипюк. — Кам'янець-Подільський : Абетка-Світ, 2016. — 244 с.

Конет І. М. Гіперболічні крайові задачі в кусково-однорідних циліндрично-кругових середовищах / І. М. Конет, Т. М. Пилипюк. — Кам'янець-Подільський : Абетка-Світ, 2017. — 84 с.

Громик А. П. Математичне моделювання коливних процесів у кусково-однорідному клиновидному циліндрично-круговому просторі / А. П. Громик // Математичне та комп’ютерне моделювання. Серія: Технічні науки : зб. наук. пр. — Кам’янець-Подільський : Кам’янець-Подільський нац. ун-т імені Івана Огієнка, 2017. — Вип. 16. — С. 36–52.

Трантер К. Дж. Интегральные преобразования в математической физике / К. Дж. Трантер. — М. : Гостехтеориздат, 1956. — 204 с.

Снеддон И. Преобразования Фурье / И. Снеддон. — М. : ИЛ, 1955. — 668 с.

Шварц Л. Математические методы для физических наук / Л. Шварц. — М. : Мир, 1965. — 408 с.

Гельфанд И. М. Некоторые вопросы теории дифференциальных уравнений / И. М. Гельфанд, Г. Е. Шилов. — М. : Физматгиз, 1958. — 247 с.

Шилов Г. Е. Математический анализ. Второй специальный курс / Г. Е. Шилов. — М. : Наука, 1965. — 328 с.