DOI: https://doi.org/10.32626/2308-5916.2018-18.26-34

Implementation of Integral Explicit Macromodels by Means of Quick-Acting Algorithms

Andrey Verlan, Jo Sterten

Анотація


A class of mathematical models of dynamic objects in the integral macromodels form, built on the «input-output» principle is considered. The possibility of reducing errors and increasing speed of the modeling process using quadrature formulas based on integral macromodels in the Volterra operators form (Volterra-Hammerstein) is investigated. The constructive algorithms of numerical modeling procedures are proposed using the method of dividing kernels.


Повний текст:

PDF (English)

Посилання


Eikhoff P. Basics of identification management systems / P. Eikhoff. — Moscow : Mir Publ., 1975. — 683 p. (In Russian).

Aparzin A. S. Mathematical modeling of nonlinear dynamical systems by Volterra series / A. S. Aparzin, S. V. Soloducha // Electronnoe modelirovanie. — Kyiv, 1999. — № 2. — P. 3–12.

Asaubaev K. Sh. Analysis of nonlinear systems described by a number of Volterra / K. Sh. Asaubaev, A. I. Barkin, Yu. S. Popkov // Avtomatika i telemehanika. — Moscow, 1976. — № 11. — P. 5–15.

Breslavets V. S. Experimental determination nuclear device model Voltaire protection of information channels / V. S. Breslavets, V. O. Kravets, O. A. Serkov // Systemy obrobky informatsii. — Kharkiv, 1999. — № 2/5. (In Ukrainian).

Brikman M. S. Integral model of modern management theory / M. S. Brik-man. — Riga : Zinatie, 1979. — 224 p.

Verlan A. F. Methods of mathematical and computer modeling of transducers and systems based on integral equations / A. F. Verlan, M. V. Sagatov, A. A. Sytnik. — Tashkent : Fan, 2011. — 336 p. (In Russian).

Verlan A. F. Computer modeling in problems of dynamics of electromechanical systems / A. F. Verlan, V. A. Fedorchuk, V. A. Ivanuk. — Kamianets-Podilskyi, 2010. — 204 p. (In Ukrainian).

Pavlenko V.D. Construction of nonlinear systems models in the form of Volter-ra kernels using cluster computing technology / V. D. Pavlenko, V. V. Cherevatyi, V. V. Burdeinyi // Zbirka naukovyh prac. — Evpaporia : ISDMIT, 2006. — Vol. 1. — P. 159–162.

Apartsyn A. S. Mathematical modelling of the dynamic systems and objects with the help of the Volterra integral series / A.S. Apartsyn // EPRI–SEI Joint seminar. — Beijing, 1991. — P. 117–132.

Boyd S. Measuring Volterra kernels / S. Boyd, Y. S. Tang, L. O. Chua // IEEE Trans. on Circuits and Systems. — 1983. — Vol. CAS–30, No. 8. — P. 571–577.

Chua L. O. Measuring Volterra Kernels (II) / L. O. Chua, Y. Liao // Int. J. Circuit Theory and Applications. — 1989. — Vol. 17, № 2. — P. 151–190.

Samarskii A. A. Numerical Methods of Mathematical Physics / A. A. Samarskii, A. V. Gulin. — Moscow : Nauchnyi Mir, 2003. — 316 p. (In Russian).

Nikolskii S. M. Quadrature equation / S. M. Nikolskii. — Moscow : Nauka, 1988. — 255 p. (In Russian).

Bahvalov N. S. Numerical Methods / N. S. Bahvalov, N. P. Zhitkov, V. M. Kobelkov. — Moscow : BINOM, 2006. — 636 p. (In Russian).

Zaluk Z. B. Asymptotic solutions of equations Volterra-Hammerstein / Z. B. Zaluk, S. S. Chistokletova // Izvestia VUZov. Mathematika. — Moscow, 2002. — № 6. — P. 78–81.

Hachatrian H. A. On the nontrivial solvability of Hammerstein-Voltera integral equations / H. A. Hachatrian, S. A. Grygorian // Vladikavkazkii mathematicheskii jornal. — Vladikavkaz, 2012. — Vol. 14, № 2. — P. 57–66.

Poljanin A. D. Handbook of Integral Equations / A. D. Pol-janin, A. V. Manzharov. — Moscow : Fizmatlit, 2003. — 608 p. (In Russian).