• O. Ustun Istanbul Technical University, Turkey
  • P. Ali-Zade Istanbul Technical University and Azerbaijan Technical University, Turkey
  • G. Mamedov Azerbaijan Technical University, Azerbaijan
  • Kiamran Radjabli Independent consultant in Virginia, United States



Ключові слова:

induction machine, digital integrator, correcting errors.


The performance of the speed controlled induction machine principally depends on the accuracy of the estimated flux. The proposed method compensates the error produced by the inherent problem in the “pure” integrator and measurement error. This paper describes the problem associated with a quasi-ideal digital integrator in particularly a modern DDA-type (Digital Differential
Analyzer) – an incremental digital integrator (IDI). The paper essentially discusses the development of the approach to the total error correction of DDA-type IDI. It is an element for processing incremental digital input-output signals using DDA principles. The basic types of errors of the incremental digital integrator are presented and then the reasons for their appearance are examined. The differential equation dY=aYdx as an example the quantitative relation of errors is investigated. The IDI error from the analytical solution is not exceeding one increment (quant) of sub-integral function Y even during a very long interval of integration variable x. This means that the IDI becomes a practically ideal integrator. The suggested methods of correcting IDI errors can be applied in simulation, modeling, especially for dynamic systems control, etc. This method is easily applied in a DSP based induction machine control to estimate the flux.


Sepahban, A., Podraza, G., Digital implementation of time-optimal attitude control, IEEE Trans // Automatic Control. – 1964. – Vol. 9. – No.2. – P. 164-174.

Ali-Zade P. G. An Approach to DDA integrator error correction, USSR Academy of Science // Technical Cybernetic. – 1968. – No.6. – P. 83-91.

Peter C. Maxwell, P. W. Baker, Philip G. McCrea, Incremental Computer Systems // Australian Computer Journal. – 1976. – Vol. 8. – No. 3. – P. 97-102.

Brafman H. et al. An incremental Computer // IEEE Tran., on Computers. – 1977. – Vol. C-26. – No. 11. – P. 1072-1081.

Reimar Hoefert. United States Patent 4,323,978, Apr. 6, 1982.

Fay D. Q. M. Algorithms of the digital differential analyzer genus implemented on an Intel 2920 signal processor // Software and Microsystems. – 1983. – Vol. 2. – No. 4. – P. 97-102.

Babuska, I., Miller, A. The post-processing approach in the finite element method – Part 2: The calculation of stress intensity factors. Int. J. Numer. Methods Eng. 20, 1111-1129 (1984)

Ali-Zade P. G., Radjabli K. T., Guseynov R. M. Digital integrating model for study of the anti-failure control system // Multiprocessor Computing Structures, Taganrog, USSR. – 1985. – No. 7. – P. 75-77.

Ghoshal S. K. and Rajaraman V. A Parallel Digital Differential Analyzer, in: Proceedings of Indo-US Workshop on Spectral Analysis. – New Delhi: Published by Oxford IBH, New Delhi, 1989. – P.561-75.

Dean Clark, A 2-D DDA Algorithm for fast image scaling // Dr Dobb's Journal. – April 1997. – P. 46-49.

Verschueren, A. C. ASIC layout of the real-time process thread scheduler for a multi media stream processor using a digital differential analyzer algorithm for clock cycle assignment, http: //w3. ele. tue. nl/ nl/ onderzoek/ publicatielijst_leerstoelen/ cnd/1997.

Nelson L., Monnerat P. M. A New Digital Differential Analyzer Approach for Inertial Technologies, Theses, Aerospace Engineering Dept., Carleton University, Defense Research Establishment, Ottawa (DREO), Ontario May, 2000.

Giles, M. B., Pierce, N. A.: Adjoint error correction for integral outputs, In Barth, T., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics // Lecture Notes in Computational Science and Engineering. – Vol. 25. – Berlin, Heidelberg, New York: Springer, 2002. – P. 47-96.

Holtz J. and Quan J., SensorlessVector control of IM at very low speed using a nonlinear inverter model and parameter identificator // IEEE Transaction on Industry Applications. – Vol. 38. – No 4. – July/Aug 2002. – P.1087-1095.

Seyoum, M.,. Rahman F., Grantham C., Improved Flux Estimators for Induction Machines // Journal of Electrical and Electronics Engineering, Australia. – 2003. – Vol. 22. – No. 3. – P. 243-248.

Captec Ltd., Product List 2004, PCI-1241, PCI-1242, PCI-1261 – 4 (6) -Axis Pulse-type Servo Motor Control Card, (http://www.captec.co.uk).

Carry Sign and Kunle Olukotun, Stanford Un. Winter 2003 EE183 code course “Incremental Digital Integrator”, www. stanford. edu/ class/ ee183/ handouts_win2003/ lect11.pdf

Cellier F. E. Continuous System Simulation, Springer-Verlag. – New York, 2004.

Lijun Hou; Yanmin Su; Lin Chen. A DSP-based vector control of multiphase induction machine Intelligent Control and Automation, 2002 // Proceedings of the 4th World Congress on Volume 4, Issue, 2002. – P. 2831-2835. – Vol. 4.

Lee D.-J. and Wang L. (Taiwan). DSP based Control of Self-Excited Induction Generators using AC-to-DC Converters and Switched Excitation Capacitors. // From Proceeding (492) Power and Energy Systems. – 2005.

Chai, O. H.; Wong, Y. S.; Poo, A. N. A DDA Paraboiic Interpolators for Computer Numericd Control of Machine Tools // Mechatronics, Great Britain. – 1994. – Vol. 4. – No. 7. – P. 673-692.

Proakis, J. G., Manolakis, D. G. Digital Signal Processing: Principles, Algonthms and Applications // Prentice-Hall, New Jersey. – 1996, ISBX 0-13-373762.