МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ НЕСТАЦІОНАРНОГО ТЕПЛОПЕРЕНОСУ В ТОНКІЙ ПЛАСТИНІ У ВИГЛЯДІ КІЛЬЧАСТОГО СЕКТОРА
DOI:
https://doi.org/10.32626/2308-5916.2010-3.64-77Ключові слова:
рівняння теплопровідності, інтегральні перетворення, головні розв’язки.Анотація
У статті методом інтегральних перетворень розв’язано задачу математичного моделювання нестаціонарних температурних полів в тонких циліндрично-ізотропних пластинах у вигляді кільчастого сектора. Одержано точні аналітичні розв’язки алгоритмічного характеру, зручні для якісного аналізу та числових розрахунків на ЕОМ. Розглянуто випадки симетрії та асиметрії задачі теплопровідності відносно серединної площини пластини з урахуванням поведінки коефіцієнтів теплообміну з бічних поверхонь пластини.Посилання
Подстригач Я. С. Термоупругость тел неоднородной структуры / Я. С. Подстригач, В. А. Ломакин, Ю. М. Коляно. — М. : Наука, 1984. — 368 с.
Сергиенко И. В. Математическое моделирование и исследование процессов в неоднородных средах / И. В. Сергиенко, В. В. Скопецкий, В. С. Дейнека. — К. : Наук. думка, 1991. — 432 с.
Коляно Ю. М. Методы теплопроводности и термоупругости неоднородного тела / Ю. М. Коляно. — К. : Наук. думка, 1992. — 280 с.
Дейнека В. С. Модели и методы решения задач с условиями сопряжения / В. С. Дейнека, И. В. Сергиенко, В. В. Скопецкий. — К. : Наук. думка, 1998. — 614 с.
Подстригач Я. С. Неустановившиеся температурные поля и напряжения в тонких пластинках / Я. С. Подстригач, Ю. М. Коляно. — К. : Наук. думка, 1972. — 308 с.
Громик А. П. Математичне моделювання нестаціонарних температурних полів в тонкій ізотропній напівсмузі-пластинці / А. П. Громик // Математическое моделирование : сб. науч. тр. НАН Украины. Ин-т математики. — К., 1996. — С. 81—84.
Громик А. П. Нестаціонарна крайова задача теорії теплопровідності тонких циліндрично-ізотропних кругових пластин / А. П. Громик, І. М. Конет // Доповіді НАН України. Математика, природознавство, технічні науки. — 1999. — № 10. — С. 16—20.
Громик А. П. Стаціонарні та нестаціонарні температурні поля у тонких необмежених циліндрично-ізотропних пластинках з круговим отвором / А. П. Громик // Вісник Тернопільського державного технічного університету. — 2000. — Т. 5, № 3. — С. 123—129.
Громик А. П. Математичне моделювання нестаціонарних температурних полів в тонкій циліндрично-ізотропній пластині у вигляді необмеженого кільчастого сектора / А. П. Громик // Вісник Тернопільського державного технічного університету. — 2005. — Т. 10, № 2. — С. 164—174.
Трантер К. Дж. Интегральные преобразования в математической физике / К. Дж. Трантер. — М. : Гостехтеориздат, 1956. — 204 с.
Матійчук М. І. Параболічні сингулярні крайові задачі / М. І. Матійчук. — К. : Ін-т математики НАН України, 1999. — 176 с.
Ленюк М. П. Интегральные преобразования с разделенными переменными (Фурье, Ханкеля) / М. П. Ленюк. — К., 1983. — 60 с.
Эйдельман С. Д. Параболические системы / С. Д. Эйдельман — М. : Наука, 1964. — 444 с.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).