ЯКІСНИЙ АНАЛІЗМАТЕМАТИЧНИХ МОДЕЛЕЙ ПРОЦЕСІВ І ПРИСТРОЇВ ПЕРВИННОЇ ОБРОБКИ ВУГЛЕВОДНЕВОЇ СИРОВИНИ НА ОСНОВІ УЗАГАЛЬНЕНИХ МОДЕЛЕЙ

Sergey Anatolievich Polozhaenko

Анотація


Theorems of existence and uniqueness of the decision of system of the equations in the private derivatives, representing the generalized mathematical model of processes and devices of preprocessing of crude hydrocarbons are formulated and proved. Generalization gives the chance to apply the principle of unification and typification when developing a method of numerical realization of mathematical models of a class of processes (devices) of preprocessing of crude hydrocarbons, and the proof of the corresponding theorems (an essence ― the qualitative analysis) provides a correctness of application of the generalized model in applied problems of mathematical modelling of studied processes (devices). Proofs of the formulated theorems are strict, logically true and are consistently executed within terms of the functional analysis. Practical applicability of theorems of existence and uniqueness of the decision as component of the qualitative analysis, is defined by possibility of research on their basis of adequacy of algorithmic means of mathematical modelling of a studied class of processes (devices).

Ключові слова


mathematical model; synthesis of the mathematical description; system of the equations in private derivatives; theorems of existence and uniqueness of the decision.

Повний текст:

PDF (English)

Посилання


Technical specifications for installation of CDU VDU. TR 00152282.006:2007. ― Odessa : OAO «LUKOIL ― Odessa Refinery», 2007. ― 208 p.

Polozhaenko S. A. Tube furnace control system of the catalytic reforming of highoctane gasoline / S. A. Polozhaenko, Y. V. Grigorenko // Electronic machine building and electronic equipment. ― Kiev : Tehnіka, 2010. ― Issue 75. — P. 62–67.

Polozhaenko S. A. Mathematical models of processes and devices of primary processing of raw hydrocarbons / S. A. Polozhaenko, Y. V. Grigorenko // Modern information and electronic technology (SIET 2013). Proceedings of the XIV International Scientific and Practical Conference. ― Odessa, 2013. ― P. 163–164.

Verlan A. F. Mathematical modelling of anomalous diffusion processes / A. F. Verlan, S. A. Polozhaenko, N. G. Serbs. ― Kiev : Naukova Dumka, 2011. ― 416 p.

Alekseev V. M. Optimal control / V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin. ― Moscow : Nauka, 1979. ― 428 p.

Azhogin V. V. Computer-aided design software of PCS / V. V. Azhogin, M. Z. Zgurovsky. ― Kiev : Visha School, 1986. — 334 p.

Lions J.-L. Optimal control of systems described by partial differential equations / J.-L. Lions. ― Academic Press, 1972. ― 414 p.

Lions J.-L. Some methods for solving nonlinear boundary value problems / J.-L. Lions. ― Academic Press, 1972. ― 587 p.

Azhogin V. V. Machine design of optimal control systems by spatially distributed dynamic objects / V. V. Azhogin, M. Z. Zgurovsky. ― Kiev : Visha School, 1985. ― 168 p.

Lions J.-L. Functional Analysis / J.-L. Lions // Springer-Verlag. — 1986. ― 371 p.

Arsenin V. Y. Methods of mathematical physics and special functions / V. Y. Arsenin. ― Moscow : Nauka, 1987. ― 430 p.


Посилання

  • Поки немає зовнішніх посилань.