Про подання нелінійних функцій рядами часткової потужності
DOI:
https://doi.org/10.32626/2308-5916.2014-11.194-198Ключові слова:
approximation, non-liner relationships, fractional-power series, splinesАнотація
A method for approximation of relationships by polynomials containing fractional-power terms is proposed, which in many cases makes it possible to cut down the number of computations. The proposed method for representation of relations by fractional-power polynomials features a smaller number of expansion terms while the approximation precision being the same as in the case of the «classical» methods. The method for finding the parameters of such expansions is considered; generalized spline of fractional order (smaller than or equal to unity) is defined. The experimental results on approximation of relations by fractional splines are presented.
Посилання
Верлань А. Ф. Математическое моделирование непрерывных динамичес-ких систем / А. Ф. Верлань, С. С. Москалюк ; ред. Г. Е. Пухов. — К. :
Наук. думка, 1988. — 288 с.
Малачівський П. С. Неперервне й гладке мінімаксне сплайн-наближення / П. С. Малачівський, В. В. Скопецький ; відп. ред.: І. В. Сергієнко. — К. : Наук. думка, 2013. — 270 с.
Верлань А. Ф. Аппроксимация экспериментальных зависимостей полиномами с дробным показателем степени / А. Ф. Верлань, И. О. Горошко, Т. П. Гушель // Электрон. моделирование. — 2002. — Вып. 24, № 3. — С. 101–106.
Вакал Л. П. Рівномірне кусково-поліноміальне наближення / Л. П. Вакал // Комп’ютерні засоби, мережі та системи. — 2006. — № 5. — С. 54–60.
Blatt H.-P. The interaction of alternation points and poles in rational approxi-mation / H.-P. Blatt // Journal of computational and applied mathematics. — 2005. — Bd. 179. — S. 31–46.
Sommer M. Hermite interpolation of data sets by minimal spline spaces / M. Sommer // Constructive Approximation. — 2005. — № 2. — P. 211–227.
Leader J. J. Numerical Analysis and Scientific Computation / J. J. Leader. —Addison Wesley, 2004.
Dunham C. B. Nearby Chebyshev (powered) rational approximation / C. B. Dun¬ham // Journal of Approximation Theory. — 1990. — № 1. — P. 31–42.
Körner T. W. Mean square approximation / T. W. Körner // Exercises in Fourier Analysis. — Cambridge University Press, 1993. — P. 122–132.
Korneichuk N. K. Exact Constants in Approximation Theory / N. K. Korneic-huk. — Cambridge etc. : Cambridge University Press, 1991. — Vol. XII. — 452 p.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).